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December 11, 2013 
 
Dear Investor, 
 
Financial markets today are quite different from those of 20 years ago. Significant developments include an 
increase in actively managed assets, broad usage of derivative products, and changes in liquidity structure. Some 
of these developments reduced the amount of alpha available to traditional investors. Additionally, changes in 
asset volatility and correlations challenged many traditional risk models. For instance, during the recent financial 
crisis, asset correlations and volatility rapidly rose to historical highs, causing many risk models to fail. 
 
In this guide we will explain a non-traditional approach of Risk Factor Investing. The goal of the approach is to 
create systematic trading strategies that can access new sources of alpha while exhibiting low and stable 
correlations. The concept of risk factors is not new - it has been used in some form by investors such as Global 
Tactical Asset Allocation (GTAA), Commodity Trading Advisor (CTA) and Equity Quant Managers.  
 
Risk factors are designed after indentifying a sound economic rationale. The risk factor premia can be related 
to market behavioral effects such as herding behavior, or the persistence of macroeconomic regimes that can 
cause price Momentum. The mean reversion of asset prices to fair-value anchors often leads to Value 
opportunities. Yet another class of risk factors is related to investors mispricing asset yields, which can lead to 
Carry opportunities. In addition to these common risk factor styles, a large derivatives market often provides 
opportunities to design novel risk factors related to asset Volatility.  
 
To create an optimal portfolio of systematic strategies, investors need to define a risk model.  The risk model 
will produce weights of individual risk factors with the goal of e.g. maximizing Sharpe ratio, minimizing 
volatility, or maintaining certain risk factor budgets. Investors can also dynamically rebalance between the risk 
factor portfolio and risk-free assets, for example to target constant volatility, or protect the principal investment. 
 
A Risk Factor approach has its own risks. Some are related to potential mistakes investors can make in factor 
design, or failing to understand the lifecycles or capacity limitations of individual risk factors. Allocation models 
also may have inherent biases and their performance can be influenced by market regimes of volatility, growth, 
and inflation. By carefully researching risk factor strategies, investors can avoid these pitfalls. 
 
In this guide, we have tried to illustrate various aspects of Risk Factor investing across asset classes. The work 
presented in this report relies on extensive research of systematic strategies by the J.P. Morgan Research 
Department over the past decade. We hope this guide will be educative for investors new to the field, and 
provide a novel perspective to practitioners of risk factor investing.      
    
 
 
 
 
 
 
 

Marko Kolanovic, PhD 
Head of Quantitative and Derivatives Strategy 
J.P. Morgan Securities LLC 

 

3 



 
 
Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

 4 



 
 
Global Quantitative and Derivatives Strategy 
11 December 2013 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

 

Contents 
Investing in Risk Factors Across Assets ............................... 6 
Introduction to Risk Premia Investing ......................................................................... 7 
From Risk Factors to Systematic Strategies ............................................................... 10 
Summary .................................................................................................................... 13 
Classification of Risk Factors ............................................... 14 
Risk Factor Framework .............................................................................................. 15 
Traditional Assets ...................................................................................................... 25 
Carry .......................................................................................................................... 29 
Momentum ................................................................................................................. 34 
Value .......................................................................................................................... 39 
Volatility .................................................................................................................... 43 
Factor Correlations .................................................................................................... 49 
Factor Selection and Factor on Factor ....................................................................... 54 
Construction and Risk Management of Factor Portfolios .. 58 
Introduction ................................................................................................................ 59 
Cross-Sectional Risk Allocation - Theory ................................................................. 62 
Time Series Risk Allocation - Theory ....................................................................... 88 
Practical Application of Risk Factor Portfolios ....................................................... 100 
Appendices ........................................................................... 123 
J.P. Morgan Investment Strategies Research ........................................................... 124 
J.P. Morgan Tradable Risk Factor Indices ............................................................... 133 
Theory of Risk Premia ............................................................................................. 159 
Factor Styles and HFR Classification ...................................................................... 163 
Factor Rankings ....................................................................................................... 169 
Implied Volatilities Across Assets ........................................................................... 172 
Independent Risk Factors ......................................................................................... 173 
Equivalent Portfolio Methods .................................................................................. 183 
Implementing Portfolio Methods ............................................................................. 185 
Academic References............................................................................................... 189 
Glossary ................................................................................................................... 194 
Contacts ................................................................................................................... 201 
Disclaimers .............................................................................................................. 202 

 

5 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 
 

 

 

 

 

 

Investing in Risk Factors Across Assets 
  

 6 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

Introduction to Risk Premia Investing 
The main task for every fund manager is to deliver stable and positive returns. To generate positive returns, managers are 
relying on methods such as fundamental and quantitative analysis, shareholder activism, technological edge, superior 
understanding of macroeconomic or geopolitical developments and others. As most managers can apply leverage to 
increase the return and risk of their strategies, the task of reducing portfolio correlations (and thus reducing portfolio risk) 
has become equivalent to seeking new alpha opportunities. Strong growth in active assets under management over the past 
two decades has therefore led to an unrelenting search both for alpha and pockets of weakly correlated assets. For 
instance, in the 1990s, it was sufficient to include emerging market assets to lower portfolio correlations. An endowment 
allocation model that included alternative assets (such as Commodities and Real Estate) easily outperformed traditional 
bond-equity portfolios on a risk adjusted basis. However, the growth in active assets and increased use of leverage 
depleted alpha, and increased correlation across all risky assets.1 The 2008 market crisis exposed the limited 
diversification benefits of traditional assets, resulting in a sharp increase in portfolio risk and losses.  

Following the lessons of the 2008 crisis, many managers increased focus on forecasting and managing the volatility of 
traditional asset classes. Having better covariance estimates could certainly improve the performance of traditional risk 
models. The low yield market environment in the aftermath of the financial crisis forced investors into more risky and 
higher yielding instruments such as equities, or to sell options to generate yield.  

Some investors took a different approach, moving away from traditional assets and designing new ‘alternative’ assets. 
In an ideal case, these new assets would have lower correlation and be able to tap into new risk premium sources. These 
assets are often called ‘Alternative Risk Factors’ (also ‘Alternative Betas’, or ‘Exotic Betas’). Unlike traditional assets, 
risk factors can be designed from any number of instruments and traditional asset classes by applying specific trading 
rules. Risk factors are defined to access new sources of risk premia, and to have more stable risk and correlation 
properties. While the risk factor approach is new to many investors, it has been used for a long time by Quantitative 
Equity managers, Global Tactical Asset Allocation (GTAA), Commodity Trading Advisors (CTAs), and Global Macro 
Hedge Fund managers. For instance, Quant Equity managers model portfolios based on equity risk factors (such as: 
growth, value, earnings momentum, short interest, etc.) instead of traditional sectors. CTAs often exploit momentum 
patterns in prices of commodities and other assets. The advantage of a risk factor approach can be illustrated by persistently 
lower correlation between alternative risk factors compared to correlation of traditional risky assets (Figure 1). 

 

1 M. Kolanovic: ‘Rise in Cross-Asset Correlations’, 2011. 

Figure 1:  Low Average correlation of Cross Asset Alternative Risk 
Factors (%) vs. High Correlation of Traditional Risky Assets.  

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  Alternative Risk factors included are 
16 ‘Toy models’ of Value, Momentum, Carry and Volatility introduced in the next Chapter. 

Figure 2: Portfolio of Traditional Assets vs. Portfolio of Alternative 
Risk Factors (Equal Weighted). 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. Alternative Risk factors included are 
16 ‘Toy models’ of Value, Momentum, Carry and Volatility introduced in the next Chapter.   
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To be a viable investment, Risk Factors must be expected to generate positive premium. Ideally, this premium (per unit 
of risk) compensates an investor more than the premia of traditional assets. In order to generate stable premia, risk factors 
are designed after indentifying sound economic rationale for the premium they deliver. The premia can be related to 
market behavioral effects such as market overreactions to changes in fundamentals and herding behavior that causes price 
Momentum. Market under-reaction or biases can lead to Value opportunities as was demonstrated in equities by Fama and 
French (1993). Yet another class of risk factors is related to supply and demand imbalances that can lead to Carry 
opportunities. One example of a carry opportunity is related to the failure of uncovered FX parity leading to the popular 
currency carry trade, or the failure of forward rates expectations (i.e. forward rates overstating future spot rates) leading to 
a bond carry trade (see the section on Carry factor style). In addition to these well researched examples, strong growth in 
the usage of derivatives and related supply/demand imbalances often provide opportunities to design novel risk factors 
related to asset Volatility. Examples include products that take advantage of the richness of index options relative to 
realized volatility, supply/demand distortion of the implied volatility term structure, or the impact of option hedging on 
cash price patterns (see the section on Volatility factor style).  

While risk factors individually may deliver good Sharpe ratios, the true power of risk factor investing comes at the 
portfolio level, where low correlation between alternative risk factors can significantly reduce portfolio volatility 
and tail risk. For example, a ‘Momentum’ risk factor in EM Currencies is expected to have low correlation to a ‘Value’ 
risk factor in equities, unlike EM Currencies and Equities that often have high correlation despite belonging to ‘different’ 
traditional asset classes (see the next section for definitions of Momentum and Value). Similarly, the correlation between 
‘Equity Value’ and ‘Bond Momentum’ risk factors is expected to be more stable, than the correlation between Stocks and 
Bonds that recently showed instability due to expected tapering of the Quantitative Easing program. Figure 1 shows the 
average correlation of risk factors across traditional, carry, momentum, value and volatility factor styles. Given the lower 
average correlation, an equal weight portfolio of alternative risk factors would have delivered significantly higher risk-
adjusted returns and lower draw-downs (tail risk) compared to an equal weight portfolio of traditional assets (Figure 2). 

The two main advantages of risk factor investing discussed above are the ability to capture non-traditional sources of 
premia (such as behavioral effects, supply-demand imbalances, and market microstructure effects), and the ability to 
maintain low average correlation of assets. The persistent premia and ability to offset factor risk at a portfolio level can 
lead to portfolio performance and risk profile with similar properties to traditional alpha. 

However there are also potential pitfalls in the risk factor approach. One is related to mistakes investors can make in 
designing risk factors, and another in failing to understand the lifecycles and capacity limitations of individual risk 
factors. We mentioned that risk factors are defined by a trading rule. However, one can define any number of rules, and 
even make these rules look profitable in historical backtests. What makes the difference between a trading rule and a valid 
risk factor is that a risk factor is designed to exploit a particular market inefficiency (e.g. related to behavioral effects, 
supply demand imbalance, or market microstructure). In other words, behind every risk factor there should be a strong 
economic rationale explaining the existence of the risk premium. In practice, this means that performance in various market 
regimes should be consistent with the economic expectation for the risk behind the factor. Besides, a risk factor should not 
be sensitive to small changes in model parameters (robustness of a factor rule) and it should have a relatively small number 
of parameters (simplicity of a factor rule – as with a sufficient number of parameters one can reproduce any return profile). 
The most common mistakes in designing risk factors are related to an in-sample bias in the determination of parameters. 
These in-sample pitfalls can range from obvious statistical mistakes to more subtle biases introduced by the trading rules 
that performed well in the recent market environment. Failure to include these considerations in the design of a risk factor 
will often result in trading rules that look good in a backtest but will likely fail to perform in the future. 
 
Another potential pitfall is an inadequate understanding of risk factor lifecycles. In an ideal world, risk factors have stable 
premium and risk properties. In reality, as markets evolve new factors will emerge alongside products such as derivatives 
or regulations that will alter investors’ behavior. Risk factors may also weaken or completely disappear due to market 
participants becoming aware of patterns and correcting them, new arbitrage channels, or simply too many assets being 
invested in a factor. The last reason is particularly important as risk factors are too often designed and tested without 
properly accounting for market impact and an estimation of how much capital can be employed before the effect 
disappears.  
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In addition to the emergence and disappearance of factors, the effectiveness of factors may also vary in different market 
cycles (e.g. demand for protection in a high volatility environment may cause future outperformance of volatility factors). 
Due to differing levels of market awareness and arbitrage efficiency we may find that the same factors work in one market 
but not in another. An example is that certain equity factors still generate positive premium in Emerging Markets and US 
small caps, while they ceased to produce returns in the more efficient US large cap space. Macro regimes can also 
adversely impact factor performance. An example is the underperformance of carry strategies in a high volatility 
environment during the recent financial crisis. Investors should be aware of factor correlations and their behavior in 
different market regimes. 
 
Given that risk factors have lifecycles, investors need to constantly research and test new factors, as well as evaluate the 
effectiveness of old ones. A summary of J.P. Morgan cross-asset risk factor research and related indices is provided in the 
Appendix.   
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From Risk Factors to Systematic Strategies 
Historically, investors explained portfolio returns as a combination of market ‘beta’ and ‘alpha’. As investors learned about 
various non-traditional sources of risk premia such risk arbitrage, currency carry, equity value effect, etc., part of the old 
‘alpha’ could be explained by premia related to these alternative risk factors or ‘alternative betas’. After isolating 
contributions from ‘alternative risk premia’, true alpha becomes limited to idiosyncratic returns and the manager’s ability to 
time risk exposures. Moving along the spectrum of returns from traditional beta to pure alpha, the expected Sharpe ratio, 
complexity and cost of a strategy is expected to increase, while capacity of a strategy is expected to decrease. Note that 
traditional asset betas such as the S&P 500 index often represent the capitalization of the asset class and hence have plenty 
of capacity, while the supply of alpha strategies is limited (i.e. every positive alpha opportunity comes at the expense of a 
market participant experiencing negative alpha). 
 
To create a systematic strategy based on alternative risk premia, investors typically start by setting a goal for the strategy. 
Unlike traditional assets (such as equity, bonds, or commodity indices), strategies based on risk factors are often designed 
to capture alternative risk premia and reduce portfolio risk. Examples are various risk factor styles such as momentum, 
value, carry, etc. These alternative beta exposures can be mixed with traditional market exposures to provide enhanced 
beta strategies; for example, constructing an equity index that deviates from market capitalization weights by 
overweighting value and size risk factors, or a broad commodity index that incorporates a momentum overlay.  Investors 
can also neutralize risk factor exposures by creating a long-short portfolio of risk factors, or diversifying away factor risk in 
a multi-factor portfolio. These approaches would create a portfolio that captures various alternative risk premia but 
eliminates most of the factor risk, effectively leading to an alpha strategy. Risk factors can be also combined with 
traditional assets to provide cost effective hedging strategies for both traditional and alternative portfolios (e.g. volatility 
risk factors are often designed as hedges). 
 

 
 
Once the goal of strategy is set, investors select an appropriate universe of risk factors. Risk factors in a portfolio can be 
any combination of traditional and alternative (momentum, value, carry, volatility) risk factors that are expected to deliver 
positive returns and reduce portfolio risk via lower correlations. To create a multi factor portfolio, investors need to define a 
risk model to rebalance weights between different factors. We will denote these models as cross-sectional risk models.  
Investors can also dynamically rebalance the weight between the risk factor portfolio and risk-free assets. We will denote 
these models as time-series risk models. 

Figure 3: Beta, Enhanced Beta, Alternative Beta and Alpha 
 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.   
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The simplest example of a weighting scheme would be fixed weights. In this approach, an investor periodically (e.g. 
monthly or quarterly) rebalances factor exposures to maintain constant weights of individual factors. This method involves 
buying factors that underperformed and selling ones that outperformed – it thus has the properties of a value (reversion) 
approach. Another popular weighting scheme is inverse volatility or Equal Marginal Volatility, in which risk factors are 
weighted inversely to their past volatility: higher asset historical volatility means a lower asset weight in portfolio. As 
volatility and performance have an inverse relation, this weighting scheme often increases the weights of assets that 
performed well and decreases the weights of assets that performed poorly – a property of a momentum-based investment 
approach. A more elaborate approach to inverse volatility weighting is to weight based on an asset’s contribution to 
portfolio volatility. This approach is similar to inverse volatility, but takes into account the correlation contribution of each 
asset to portfolio volatility. This weighting approach is called equal contribution to risk or Risk Parity.  
 
Investors often optimize the tradeoff between portfolio risk and return. A mathematical approach to optimize the tradeoff 
(utility) is a Mean Variance Optimization under certain assumptions for future asset returns, volatility, and correlations. 
For instance, a Mean-Variance Optimization (MVO) that assumes equal asset returns would lead to a portfolio with the 
lowest possible volatility or Global Minimum Variance portfolio (GMV). Assuming equal asset Sharpe Ratios would 
lead to the Most-Diversified portfolio (MDP). Investors can also incorporate a customized view of asset performance and 
combine it with market consensus views. This methodology is captured by the Black-Litterman (BL) approach. Each of 
these risk models will be examined in greater detail in the 3rd Chapter of this report.  
 
Once the multi-factor portfolio with prescribed weight allocation is constructed, investors can decide to manage overall risk 
of the portfolio by a dynamic allocation between the portfolio and risk free asset. For instance, one can target a constant 
volatility by allocating based on trailing volatility. Another popular method of rebalancing between the portfolio and risk 
free asset is Constant Proportional Portfolio Insurance (CPPI), in which an investor increases exposure following a 
positive performance, and decreases following negative performance to protect a predetermined floor asset value. Investors 
can purchase listed and over the counter options to create virtually any risk profile for the underlying multi-factor model. 
Finally, some investors use timing models that can allocate risk based on various macroeconomic or technical signals.  
 
Figure 4 below shows a process of designing a systematic cross-asset strategy.  The process starts with an investor defining 
a strategy goal (alternative beta, enhanced beta, alpha, hedging), designing and selecting risk factors, and finally deciding 
on a risk management approach for the multi factor portfolio (by assigning relative asset weights, and determining the 
allocation to the risk-free asset over time). 
 
It shows different strategy types, taxonomy of risk factors, and a sample of risk management methods. A process of 
designing a systematic cross-asset strategy would start with the selection of a strategy type: access beta, alternative beta, 
enhanced beta, alpha, or hedging strategy.  
 
At the core of risk factor investing is the design and selection of risk factors. While there is no unique taxonomy, we 
classify the main factor styles as: Traditional Beta, Carry, Momentum, Value and Volatility. Additionally, many 
investors designate factors across traditional asset classes (equities, credit, currency, commodity, volatility) and 
geographic regions (Americas, Europe, Developed Asia, Emerging Markets and Frontier Markets) - e.g. US Equity 
Value, DM Bond Carry, etc. Notice that we have classified Volatility both as a traditional asset and a risk factor style (e.g. 
to accommodate strategies that focus on cross-asset volatility, single-asset volatility, or even volatility of volatility). Certain 
factors may have properties of more than one factor style and for this reason we included multi-style, asset and region 
designations (unlike ideal world ‘orthogonal’ factors).  
 
The last important step is selecting a risk methodology or weighing scheme of factors within a portfolio. Asset relative 
weighting (cross-sectional risk model) can be as simple as fixed factor weights, or more complex risk optimization 
techniques based on MVO or Risk Budgeting. Additionally, investors can implement time-series risk management 
techniques of dynamic allocation between the factor portfolio and risk-free asset. Popular techniques include CPPI-based 
techniques (such as CPPI and constant volatility) and option based risk methods. 
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In the second chapter of the report we will elaborate on the risk factor taxonomy illustrated in Figure 4 (middle 3 
columns). We will construct simple models of traditional, carry, momentum, value and volatility risk factors in each of the 
asset classes, and illustrate their return, volatility and correlation properties in various market regimes. In the third chapter 
we will focus on risk management and portfolio construction techniques (Figure 4 last column). We will examine the 
historical behavior of factor portfolios and illustrate the benefits and drawbacks of different portfolio methods. Finally in 
the Appendices, we will provide additional technical details on factor styles and risks methods, provide an overview of 
existing J.P. Morgan research strategies and tradable products, link our factor styles and popular hedge fund strategies, 
provide a list of  relevant literature and glossary of terms, and more. 

  

Figure 4: Designing a Systematic Strategy 
 

 
 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.   
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Summary 
 Low Alpha / High Correlation Problem: Diminishing availability of alpha and high cross-asset correlations have 

prompted investors to seek new investment strategies and styles. In the search for higher risk adjusted returns, finding 
pockets of low asset correlations can be as important as finding new Alpha. A risk factor investment approach aims to 
deliver both. 
 

 Risk Factors: Also called alternative betas, or exotic betas, are synthetic assets designed to capture risk premia not 
accessible by traditional assets. Risk factors are defined by a set of trading rules that often involve multiple assets and 
trading instruments, and a rebalancing strategy. Risk factors are sensible only if there is a strong economic rationale for the 
premium they deliver. Investors should be able to trace the premium to some specific market inefficiency. This premium 
can be related to the irrational behavior of market participants, supply/demand friction, change in market micro structure, or 
other market inefficiencies. 
 

 Main Advantages of Risk Factor Approach: There are two main advantages of a risk factor approach: the ability to 
access new sources of premia (not available to traditional assets), and typically lower correlation between risk factors 
(compared to the correlation between traditional assets). Given the positive expected premia and lower correlation, the 
performance of a risk factor portfolio can mimic alpha in a portfolio of traditional assets, with lower volatility and tail risk. 
 

 Potential Pitfalls: In an ideal world, risk factors should deliver steady premia and have stable correlation properties. In the 
real world, this is often not the case. Factors have lifecycles, the level of premia can vary over time, and the correlation 
between factors can increase in certain market environments. Potential pitfalls in risk factor investing are related to flaws in 
factor design or failing to understand the lifecycle of individual risk factors. Design mistakes are often related to in-sample 
biases. Lifecycle issues include factors losing effectiveness due to arbitrage activity or capacity limitations. By carefully 
researching risk factors, one can avoid these pitfalls. 
 

 Types of Systematic Strategies: Risk factors are building blocks for systematic strategies. These strategies can be 
designed with the aim to generate alpha, enhance performance of traditional assets, provide specific alternative beta 
exposure or serve as a portfolio hedge. 

  
 Classification of Risk Factors: While there is no unique classification of risk factors, the main styles of risk factors are: 

Traditional, Carry, Momentum, Value, and Volatility. In addition to the main style designation, investors often describe 
a risk factor with traditional asset class or geographical region designations (e.g. US Equity Momentum, EM FX carry, 
etc.). Some risk factors have properties of more than one style (e.g. Carry may have a negative exposure to Volatility, etc.). 
Understanding factor premia and correlations under various market regimes enables investor to construct portfolios with 
lower risk compared to portfolios of traditional assets. 

 
 Portfolio Construction methods: To create a viable systematic strategy, an investor needs to select factors and prescribe a 

weighting methodology. Weights of factors can be selected to minimize portfolio volatility, maximize Sharpe ratio or 
diversification, equalize risk contribution from each factor, or implement an investor’s specific views on risk and returns. 
These are called Cross-Sectional Risk Methods. Once the factor relative weights are determined, overall portfolio risk can 
be managed by dynamically allocating risk between the factor portfolio and risk-free asset. These are called Time-Series 
Risk Methods and include volatility targeting, CPPI, stop loss, and option based risk methods.    
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Risk Factor Framework 
The rationale for risk premia of traditional assets such as Equities and Bonds are well documented.2 For instance, equity 
premia are often linked to a risk of recession and market crash, and corporate bond premia to a company’s default risk. 
Both Equity and Corporate bond risk premia behave similarly and tend to widen in a high volatility environment. In our 
effort to classify alternative risk factors, we will look for the factors’ economic rationale, risk properties, and behavior in 
various market regimes. A similar approach was used, for instance, in the classification of equity risk factors by Fama and 
French (1993). Based on these considerations, we will classify risk factors into five broad styles: Traditional, Carry, 
Momentum, Value, and Volatility. In addition to this broad classification, investors often describe a risk factor with 
traditional asset class or geographical region designations (e.g. US Equity value, EM FX carry, Commodity momentum, 
etc.). 

While there is no unique way to classify risk factors, we think our choice of five main styles is intuitive and consistent with 
more rigorous academic results. In an idealized world, these risk factor styles should be independent (orthogonal), 
deliver positive risk premia, and form a complete set in the sense that they can explain the risk of any systematic 
strategy (span all ‘dimensions’ of risk). In practice, these requirements will hold only approximately. For instance, the 
correlation between risk factors is almost never zero. However, at a portfolio level correlations can average out to a 
sufficiently low level to be considered approximately zero. Risk premia are expected to be positive on average, but factors 
occasionally suffer from draw-downs. Finally, while these five factor styles are expected to form a complete set of risk 
dimensions, it is quite possible that new market inefficiencies (due to e.g. new products or trading styles) create a need for 
introducing additional factor styles in the future. 

In the rest of the section we will define the factor styles, and analyze their properties. To provide insights into each of the 
factor styles, we constructed simple illustrative models for each factor style (traditional, momentum, value, carry, 
volatility) and in each of the traditional asset classes (equities, rates, commodities, currencies). We will study performance, 
volatility and correlation profiles of these factor style models under different macro-economic environments of GDP 
growth and inflation, as well as different market technical regimes of volatility, funding liquidity and market liquidity.  

The expected return of any trading strategy can be broken down into the return contributions from traditional asset classes 
such as stocks, bonds, commodities, etc. and an alternative contribution that is not explained by these traditional betas. The 
expectation for idiosyncratic returns is zero, as these events are by definition unrelated to either traditional or alternative 
risk factors. Specifically, the expected return (ER) of a trading strategy is given by:  

ER(Trading Strategy)𝑡 = ER(Traditional Assets)𝑡 + ER(Alternative Factors)𝑡 

This expected return is also called the ‘ex-ante’ return or ‘ex-ante’ premium at time t. As we mentioned earlier, risk premia 
of traditional assets are related to well understood risks such as tail events and economic contraction in equities, inflation 
risk premium (IRP)3, business cycles4 in bonds, market volatility, and corporate defaults in credit. The expected total return 
of a traditional risk factor itself is given by its expected yield (or net cash flow income yield) and price return (PR) of the 
asset:  

ER(Traditional Asset)𝑡 = Yield𝑡 + 𝐸(PR)𝑡 

 

Price return can capture changes related to changes in asset valuations but also technical drivers such as persistent 
inflows/outflows of funds to the asset class, covering of short interest, and others. By including yield, valuation and 
technical contributions, the expected return of a traditional asset can be written as  

2 See, for example, Siegel (1994), Cornell (1999), Dimson–Marsh–Staunton (2002), Fama–Bliss (1987), Campbell–Shiller (1991), 
Longstaff–Mithal–Neis (2005) and Ilmanen (2003, 2011). See the Appendix for a list of references to relevant academic studies. 
3 Higher inflation uncertainty warrants higher required premia for holding nominal bonds. 
4 The slope of yield curve (YC) is closely related to business cycles. For example, a steep YC usually predicts higher economic growth. 
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ER(Traditional Asset)𝑡 = ER(Yield)𝑡 + ER(Valuation)𝑡 + ER(Technical)𝑡 

This is a natural framework to explain risk premia for asset classes such as equities and real estate (that have well defined 
yields such as dividend, bond or rental yields, and valuation ratios such as P/E, P/B, Price to rental income ratio, etc.), but it 
can also be generalized to other asset classes such as commodities and currencies. For instance, commodities and currency 
have both fundamental valuations (based on inflation levels, GDP growth, etc.), as well as yield components such as 
commodity futures term structure roll, and cross-currency interest rate differentials. 

Alternative risk factors such as Carry, Momentum and Value are constructed as long-short portfolios of traditional 
assets. The choice of asset weights and rebalancing method is such that these alternative risk factors capture risk premia 
related to certain market inefficiencies, but don’t have a direct exposure (beta) to traditional risk factors.  

                             ER(Alternative Factor)𝑡 = ∑ 𝑤𝑖𝑡𝑖 ER(Traditional Asset𝑖)𝑡  

                                                                   = ∑ 𝑤𝑖𝑡𝑖 ER(Yield𝑖)𝑡 + ∑ 𝑤𝑖𝑡𝑖 ER(Valuation𝑖)𝑡 + ∑ 𝑤𝑖𝑡𝑖 ER(Technical𝑖)𝑡  

 

Carry strategies are constructed by holding long positions in higher yielding assets and short selling lower yielding assets. 
An example of a carry risk factor is currency carry, where an investor is long high yielding currencies and short low 
yielding currencies. A portfolio can be diversified across a number of currency pairs to diversify exposure to a single 
currency or other exposures. Financial theories based on idealized frictionless markets would suggest that any carry 
advantage would be undermined by subsequent relative price depreciations (uncovered interest rate parity). However, 
empirical evidence suggests otherwise – higher yielding currencies have delivered persistent outperformance. 

Value strategies are constructed by holding long positions in undervalued and short positions overvalued assets based on 
some valuation model. An example would be a portfolio that is long stocks with a low Price-to-Book ratio (P/B) and short 
stocks with a high P/B ratio. A long-short value portfolio can be made market neutral, and also be neutral on the carry risk 
factor (e.g. setting the average dividend yield of high value stocks equal to the average dividend yield of low value stocks). 
In an efficient market, a value portfolio would not outperform the market, as the premium built into value stocks would 
compensate for the few stocks that end up defaulting (i.e. value traps). In practice, value stocks tend to outperform the 
market. This was demonstrated for instance in the work of Fama and French (1993). While simple value factors such as 
P/B still outperform when applied to emerging market equities, this simple rule is not working well in developed markets. 
However, more advanced value factors based on corporate earnings and cash flow ratios recently have shown strong 
performance across emerging and developed market stocks. 

Momentum strategies are based on technical signals and tend to be long assets whose price recently appreciated, and short 
assets whose price depreciated. Momentum patterns develop if there are persistent fund flows or persistent macro trends 
that cause a serial correlation of asset returns. Momentum can be caused by irrational behavior of investors who extrapolate 
past performance of an asset: herding into winning assets and abandoning losing ones. An historical example of positive 
serial correlations during market rallies is the late ‘90s Tech bubble. Another cause of the momentum effect is a mismatch 
between asset supply and demand cycles. The mismatch of supply and demand cycles can be illustrated in commodities 
where the production cycle is often slow to adjust to demand trends (e.g. it takes several years to expand oil production, 
which may persistently lag increased demand from emerging economies). Momentum factors can be constructed based on 
absolute or relative return, within or across traditional asset classes. 

By constructing a long-short portfolio of traditional assets in such a way to eliminate exposure to traditional market factors, 
one can create alternative risk exposures such as Carry (long high yield, short low yield), Value (long high value, short low 
value) and Momentum (long outperformers, short underperformers). This enables us to express the expected return of an 
alternative risk premia strategy as: 

ER(Alternative Factor)𝑡 = ER(Carry)t + ER(Momentum)𝑡 + ER(Value)𝑡 
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We should note that the momentum and value components are generic terms in this framework: they could include any 
factor with positive premia that is caused by a particular technical trend or fundamental value anchor. Similarly, carry 
factors can involve yield, not just from traditional assets, but also derivative yield such as the one from futures and swap 
term structure roll-down, etc. 

Volatility as an Alternative Strategy Style: We defined each of the risk factors (Traditional, Carry, Momentum and 
Value) via expected risk premia. The actual return of a systematic strategy will in most cases be different than the expected 
return due to uncertainty embedded in individual risk premia. In other words, each risk factor will exhibit volatility, and 
actual realized returns (‘ex-post’ returns) will differ from expected (‘ex-ante’) premia. For instance, if a value stock in a 
long-short value portfolio defaults, the factors may deliver a negative return instead of positive expected value premia. 
Similarly, currency carry return could deviate from ex-ante measures due to inflation, currency devaluation, or a sudden 
unwind of carry trades. The actual return of any strategy will therefore have uncertainty associated with both traditional 
and alternative risk factors. This uncertainty can be priced in as additional Volatility premia to each of the risk factors. 

Realized Return𝑡 = ER(Trading Strategy)𝑡 + [Realized Return − ER(Trading Strategy)]𝑡 

                                = Traditional Factor𝑡 + Alternative Factor𝑡 + [Realized Return − ER(Trading Strategy)]t 

         = Traditional Factor𝑡 + Carry𝑡 + Momentum𝑡 + Value𝑡 + Volatility𝑡 

Volatility risk premia can be priced implicitly in the price of an asset, and are often explicitly priced in options and other 
derivative instruments. Implied volatility often represents the market’s expectation of future volatility but also reflects the 
supply and demand for owning volatility exposure. Implied volatility can be traded indirectly via options (option prices are 
based on implied volatility) and directly via instruments such as volatility futures and variance swaps. Long volatility 
positions are negatively correlated with other risky assets such as equity and credit, and can help reduce overall portfolio 
risk. This benefit comes at a cost, and long volatility positions typically have negative expected premia (negative carry). 
Volatility factors often sell these expensive volatility premia to generate returns. 

The pricing of volatility risk premia can differ for options on various traditional assets. Different levels of volatility risk 
premia can result from market perceptions of risk, or from supply/demand for protection. For example, equity index 
volatility tends to trade persistently rich, while currencies often exhibit more balanced levels of volatility premia. The most 
likely reason for the difference in levels of risk premia is that equities are on balance held long and hedged by investors, 
while currencies are held both long and short. Given the divergent levels of volatility risk premia, one can construct a 
portfolio that is systematically short expensive volatility premia, or a portfolio that is short expensive and long cheap 
volatility premia. In our classifications of alternative risk factors we decided to classify these strategies as Alternative 
Volatility risk factors rather than, e.g. Value risk factors.5  

We believe that our categorization of risk factors as Traditional, Carry, Momentum, Value, and Volatility provides a sound 
framework to analyze cross asset systematic strategies. In an idealized world these factors would be independent (e.g. 
principal components) and could explain the returns of any strategy (Figure 5 below). While they will often fail to do so in 
the real world, as a tool they will enable us to identify and capture opportunities in risk factor investing. 

5 There is no broad consensus of how to classify volatility strategies. For instance, many investors consider a long volatility exposure to 
be one of the traditional asset classes, while some classify short volatility strategies as Carry strategies rather than recognizing them as a 
separate risk factor. To leave room for different opinions about the classification of volatility strategies, we have included volatility both 
as one of the main asset classes (alongside, equities, commodities, etc.) as well as one of the Alternative risk factors. We will often refer 
to simple long volatility strategies as ‘traditional factors’ and more elaborate premium extraction strategies as ‘alternative volatility’ risk 
factors. This dual classification of volatility will also enable us to more precisely identify volatility strategies. For instance a common 
strategy of selling equity index variance can be either classified as ‘Equity Volatility’, or ‘Volatility Carry’ strategy. 
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Figure 5: Risk premia space spanned by five factor styles 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
To illustrate the main properties of risk factors, we designed ‘toy models’ for the five factor styles in each of the asset 
classes. Table 1 below shows these simple implementations of Traditional, Carry, Momentum, Value and Volatility 
factors that we will study in the rest of this section.  

Table 1: Stylized examples of risk factors across asset classes 

 Traditional Carry* Momentum* Value* Volatility 

Equities S&P 500 Dividend Yield Past 12-month price return Book to Price Ratio Option Writing on SPX 

Rates and Credit US Treasury Bond Slope of yield curve Past 12-month price return Past 3-year change in 
yield 

Option Writing on UST 
futures 

Currencies DXY Short-term deposit rate Past 12-month price return Past 5-year loss of PPP Rolling Currency Vol 
Swap 

Commodities S&P GSCI Ex-ante roll yield Past 12-month price return Past 5-year average to 
current price Option Writing on Gold 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * Risk factors are created via long-short portfolio of corresponding assets according to the definitions of Carry, Momentum and Value 
respectively. 

 
First we will analyze the historical return distributions for these risk factors. This will include simple performance 
statistics, as well as risk metrics such as standard deviation (volatility), skewness of returns, and tail risk (kurtosis). 
Additionally we will report common performance ratios such as Sharpe, Sortino, Calmar ratios, as well as factor 
correlations and co-kurtosis with equities and bonds. For completeness we have included definitions of these measures in 
the Mathematical Box below. Readers who are familiar with these metrics or are not interested in formalism may skip to 
page 22. 

 
  

Traditional

Carry

MomentumValue

Volatility
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Mathematical Box (Performance-Risk Analytics) 

For a time series observation of total returns 𝑹 = (𝑟1, … , 𝑟𝑇)′ with N observations per annum and the corresponding time 
series of risk-free rates 𝑹𝑓, 𝑹𝑒 = 𝑹 − 𝑹𝑓 = (𝑟1𝑒 , … , 𝑟𝑇𝑒)′ is the excess return. In addition, 𝑺𝑹 = (𝑆1, … , 𝑆𝑇)𝑇with 𝑆𝑡 =
∏ (1 + 𝑟𝑖)𝑡
𝑖=1  is the net asset value (NAV) for the return series 𝑹.  

We define the following "Core Return-Risk Analytics", "Tail Risk Analytics" and "Performance Evaluation Analytics", 
which will be used and referred throughout the text. Acronyms for each analytics are included in the parentheses right 
behind the corresponding full name. 

Core Return-Risk Analytics 
 
• Annualized average return (Average): 

𝝁𝑹 =
𝑁
𝑇
�𝑟𝑖

𝑇

𝑖=1

 

• Annualized compounded return (CAGR):  

𝒈𝑹 = ��(1 + 𝑟𝑖)
𝑇

𝑖=1

�

𝑁
𝑇

− 𝟏 = (𝑆𝑇)
𝑁
𝑇 − 1 

• Annualized standard deviation (StDev): 

𝝈𝑹 = �𝑁
∑ (𝑟𝑖 − 𝑟̅)2𝑇
𝑖=1
𝑇 − 1

 

where 𝑟̅ = 1
𝑇
∑ 𝑟𝑖𝑇
𝑖=1 = 𝝁𝑹/𝑁 is the arithmetic average of the returns. 

• Annualized downside deviation (DownDev):  

𝑫𝝈𝑹�𝑅Target� = �𝑁
∑ �min�𝑟𝑖 − 𝑅Target, 0��2𝑇
𝑖=1

𝑇
 

 where 𝑅𝐓𝐚𝐫𝐠𝐞𝐭 is so-called target return (or Minimum Acceptable Return to evaluate the relative performance). The 
downside deviation is also called the "loss standard deviation”. 

• Annualized upside deviation (UpDev) or “Gain standard deviation”:  

𝑼𝝈𝑹�𝑅Target� = �𝑁
∑ �max�𝑟𝑖 − 𝑅Target, 0��2𝑇
𝑖=1

𝑇
 

• Annualized Covariance (CoVar) between 𝑹 and another return series X:  

𝐂𝐨𝐕𝐚𝐫𝑹,𝑿 =
𝑁

𝑇 − 1
�(𝑟𝑖 − 𝑟̅)(𝑥𝑖 − 𝑥̅)
𝑇

𝑖=1

 

• Correlation (Correl) between 𝑹 and another return series X:  

𝐂𝐨𝐫𝐫𝐞𝐥𝑹,𝑿 =
𝐂𝐨𝐕𝐚𝐫𝑹,𝑿

𝝈𝑹𝝈𝑿
 

Covariance and correlation could be calculated either in total returns or excess returns. 
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Tail Risk Analytics 
 
• Skewness (Skew) measures the symmetry of a distribution:  

𝐒𝐤𝐞𝐰𝑹 =
𝑇

(𝑇 − 1)(𝑇 − 2)��
𝑟𝑖 − 𝑟̅
𝒔𝑹

�
3𝑇

𝑖=1

 

where 𝒔𝑹 = 𝝈𝑹/√𝑁 is the (un-annualized) standard deviation of the returns. 

• Kurtosis (Kurt) characterizes the relative richness of the tail of a distribution compared with a normal distribution: 

𝐊𝐮𝐫𝐭𝑹 =
𝑇(𝑇 + 1)

(𝑇 − 1)(𝑇 − 2)(𝑇 − 3)��
𝑟𝑖 − 𝑟̅
𝒔𝑹

�
4𝑇

𝑖=1

−
3(𝑇 − 1)2

(𝑇 − 2)(𝑇 − 3) 

• Tail Dependence Coefficient (TDC) between 𝑹 and 𝑿 measures the probability of extreme values occurring for R 
given that X assumes an extreme value too. For a return series we are specifically concerned with the “left tail”: 

𝐋𝐞𝐟𝐭 𝐓𝐃𝐂𝑹,𝑿 = Prob(𝑹 is extemely small given 𝑿 is extremely small ) 

       Since its estimation involves specific parametric or non-parametric copula models, we don’t provide its sample 
formula here. 

• CoSkewness (CoSkew) between 𝑹 and 𝑿 measures the symmetry of the distribution of 𝑹 relative to 𝑿: 

𝐂𝐨𝐒𝐤𝐞𝐰𝑹,𝑿 =
𝑇

(𝑇 − 1)(𝑇 − 2)�
(𝑟𝑖 − 𝑟̅)(𝑥𝑖 − 𝑥̅)2

𝒔𝑹𝒔𝑿2

𝑇

𝑖=1

 

• CoKurtosis (CoKurt) between 𝑹 and 𝑿 measures the tail dependence of the distribution of 𝑹 relative to 𝑿: 

𝐂𝐨𝐊𝐮𝐫𝐭𝑹,𝑿 =
𝑇(𝑇 + 1)

(𝑇 − 1)(𝑇 − 2)(𝑇 − 3)�
(𝑟𝑖 − 𝑟̅)(𝑥𝑖 − 𝑥̅)3

𝒔𝑹𝒔𝑿3

𝑇

𝑖=1

−
3(𝑇 − 1)2

(𝑇 − 2)(𝑇 − 3) 

       The Co-Skewness and Co-Kurtosis statistics are measured relative to a particular benchmark to assess the 
systematic exposure to skew and tail risks. 

• Drawdown (DD) measures the current percentage loss of NAV from the previous high water mark (HWM) within a 
specific time window:  

𝐃𝐃𝑹(𝑡1, 𝑡2) =
𝑆𝑡2

HWM(𝑡1, 𝑡2) − 1, where HWM(𝑡1, 𝑡2) = max𝑡1≤𝑡≤𝑡2𝑆𝑡 

• Maximum Drawdown (MaxDD) measures the maximum peak to trough percentage change of the NAV during a 
specific period:  

𝐌𝐚𝐱𝐃𝐃𝑹(𝑡1, 𝑡2) = −max𝑡1≤𝑡≤𝑡2|𝐃𝐃𝑹(𝑡1, 𝑡)| 

 As the absolute value of maximum drawdown is higher for longer periods, a reasonable window (e.g. past three years) 
is usually applied to the calculation so as not to disadvantage managers with longer track records. 
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• Drawdown Duration (DDur) measures the time in years from the last HWM: 

𝐃𝐃𝐮𝐫𝑹(𝑡1, 𝑡2) =
𝑡2 − 𝜏
𝑁

, for 𝑡1 ≤ 𝜏 ≤ 𝑡2 such that 𝑆𝜏 = HWM(𝑡1, 𝑡2) 

• Maximum Drawdown Duration (MaxDDur) measures the maximum amount of time in years to reach previous 
HWM:  

𝐌𝐚𝐱𝐃𝐃𝐮𝐫𝑹(𝑡1, 𝑡2) = max𝑡1≤𝑡≤𝑡2𝐃𝐃𝐮𝐫𝑹(𝑡1, 𝑡) 

• Pain Index (PainIdx) measures the average drawdown from the recent HWM and penalizes on the duration of 
drawdown:  

𝐏𝐚𝐢𝐧𝐈𝐝𝐱𝑹 = −�
𝐃𝐃𝑹(𝑡)

𝑇

𝑇

𝑡=1

 

• Value at Risk (VaR) measures a particular percentage quantile of the return distribution. Specifically, given a 
confidence level 𝛿, the related 𝐕𝐚𝐑𝑹(𝛿) is determined such that probability of a return lower than 𝐕𝐚𝐑𝑹(𝛿) is 𝛿. We 
use an empirical estimate from the historical data:  

𝐕𝐚𝐑𝑹(𝛿) = Quantile(𝑹, 𝛿) 

• Conditional Value at Risk (CVar) or expected shortfall evaluates the expected return given the return is below 
𝐕𝐚𝐑𝑹(𝛿), or  

𝐂𝐕𝐚𝐑𝑹(𝛿) = 𝐸[𝑹|𝑹 ≤ 𝐕𝐚𝐑𝑹(𝛿)] 

 
 
Performance Evaluation Analytics 
Performance evaluation usually focuses on certain risk-adjusted return measures. Common measures include alpha and 
various alternatives of “excess return to risk” ratios: 

• Alpha measures the risk-adjusted excess return from a factor model: 

𝑹𝑒 = 𝜶 + 𝛽1𝑓1 + ⋯+ +𝛽𝑛𝑓𝑛 + 𝜀, 

 where 𝑓1, … , 𝑓𝑛 are n systematic excess return factors and 𝜀 is a white noise error term. The regression estimation of 𝜶 
is the ex-post alpha to measure portfolio performance after adjusting for systematic factors such as the Fama-French 
six factors. The regression estimated 𝛽1, … ,𝛽𝑛 are the factor loadings or Betas, which measure the relative sensitivity 
of portfolio excess returns to each factor (after controlling for other factors). 

• Sharpe Ratio (SR):  

SR𝑹𝑒 =
𝝁𝑹𝑒
𝝈𝑹𝑒

 

 When the benchmark used for the calculation of excess return is not a risk-free asset, this is often called Information 
Ratio.  

• Adjusted Sharpe Ratio (ASR):  

ASR𝑹𝑒 = SR𝑹𝑒 × �1 +
𝐒𝐤𝐞𝐰𝑹𝑒

6
SR𝑹𝑒 −

𝐊𝐮𝐫𝐭𝑹𝑒
24

�SR𝑹𝑒�
𝟐� 
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The adjusted Sharpe Ratio was proposed as an alternative to the standard Sharpe ratio when related performance is not 
normally distributed. The measure is derived from a Taylor series expansion of an exponential utility function. 

• Sortino Ratio (Sortino):  

Sortino𝑹𝑒 =
𝝁𝑹𝑒

𝑫𝝈𝑹𝑒�𝑅Target�
 

where the target return 𝑅𝐓𝐚𝐫𝐠𝐞𝐭 is usually set to be 0 for an excess return series.  

• Calmar Ratio (Calmar):  

Calmar𝑹𝑒 = −
𝝁𝑹𝑒

𝐌𝐚𝐱𝐃𝐃𝑹𝑒(Past 3 years) 

• Pain Ratio (PainRatio):  

PainRatio𝑹𝑒 =
𝝁𝑹𝑒

𝐏𝐚𝐢𝐧𝐈𝐝𝐱𝑹𝑒
 

• Reward to VaR Ratio (VaRatio):  

VaRatio𝑹𝑒 = −
𝝁𝑹𝑒

𝑁 × 𝐕𝐚𝐑𝑹𝑒(𝛿) 

• Reward to CVaR Ratio (CVaRatio):  

CVaRatio𝑹𝑒 = −
𝝁𝑹𝑒

𝑁 × 𝐂𝐕𝐚𝐑𝑹𝑒(𝛿) 

• Hit Rate measures the percentage of non-negative returns relative to a certain benchmark:  

Hit𝑹𝑒 =
∑ 1{𝑟𝑖𝑒 ≥ 0}𝑇
𝑖=1

𝑇
 

• Gain to Pain Ratio (GPR) measures the sum of positive returns to sum of negative returns:  

GPR𝑹𝑒 = −
∑ max(𝑟𝑖𝑒 , 0)𝑇
𝑖=1

∑ min(𝑟𝑖𝑒 , 0)𝑇
𝑖=1

 

 

 

 
To develop a better understanding of traditional and alternative risk factors, we further studied properties of our factors 
under different macroeconomic and market-technical regimes. In particular, we examined performance, volatility, tail risk, 
correlations, and other risk properties in different regimes of Growth (YoY change of OECD CLI, a leading indicator of 
global economic growth), Inflation (OECD global consumer price inflation indicator), Volatility (1-month S&P 500 
realized volatility ), Funding Liquidity (TED Spread, defined as the difference between 3-month Treasury Bill rate and 3-
month US$ Libor rate, measures broad US$ funding risk), and Market Liquidity  (the Pástor-Stambaugh (2003) market 
liquidity factor, which measures aggregate stock market liquidity in the US). Figure 6 below shows the historical 
distribution of the five regime indicators6 - growth, inflation, volatility, funding liquidity and market liquidity during the 
period from 1972 to 2012, using monthly data.  

6 These indicators were standardized "in-sample" to have unit variance and zeros median for better visualization.  
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Figure 6: Historical profile of macro economic and market regime factors during 1972-2012            

 

Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg, OECD, and Pástor-Stambaugh (2003). * Regime factors are standardized to unit variance and zero median. ** Current 
values (green triangles) for Growth, Inflation, Volatilities and Funding Liquidity factors are based on latest available data in 2013 from OECD, Bloomberg and J.P. Morgan Markets as of 10 Dec 
2013; Current Value for the Market Liquidity factor refers to the data point in Dec 2012 from the authors' website. 

 
We note that volatility and inflation have a tendency to spike (positive skewness), and the funding and market liquidity 
measures have tendency to drop (negative skewness). All the measures exhibit a higher likelihood of “tail” events than a 
normal distribution (positive excess kurtosis). Figure 7 below shows the history of these measures over the past 40 years. 
Notable features include the growth cycles, recession of ’74, ’09, strong inflation and funding stress in late 70s, market 
crash of ’87, high volatility and low liquidity during market crises of’02, ’08, etc. The Figure shows that we are currently in 
a low Growth, exceptionally low Inflation, low Volatility, and high Funding and Market Liquidity regime.  

Figure 7: Growth, Inflation, Volatility and Liquidity during the past four decades*  
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Regime factors are standardized to unit variance and zeros median.  

 
The five macro and market technical regime indicators discussed are not independent of one another.  Table 2 below shows 
the correlation of these regime indicators over the past 40 years, as well as during five crisis periods. For instance, 
Volatility was negatively correlated with all the other factors, and the negative correlation was most pronounced during 
crisis periods. Funding Liquidity was significantly negatively correlated with inflation, partly reflecting the secular decline 
in inflation and improvements in systemic banking credibility and so on.  
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Table 2: Correlation matrix of Growth, Inflation, Volatility, Funding Liquidity and Market Liquidity Indicators (lower triangular statistics are 
the all-sample pair-wise correlation, upper triangular are the correlation statistics during crisis periods*) 

  
Growth Inflation Volatilities Funding 

Liquidity 
Market  

Liquidity 
Growth   47 -69 31 23 
Inflation 4   -41 -22 18 
Volatilities -38 -9   -41 -33 
Funding Liquidity 17 -71 -20   26 
Market Liquidity 10 -14 -43 28   
            
Full Sample Average -2 -22 -28 -12 -5 
Crisis Average 8 0 -46 -2 8 
During GFC -4 1 -48 -9 3 

 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * Crisis periods we include for the correlation calculation are Oct 1973—Mar 1974 (OPEC Oil Crisis), Aug 1982 – Oct 1983 (Latin 
America debt crisis), July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and LTCM), and Aug 2007 - Mar 2009 (Global Financial Crisis or 
GFC). ** Full sample correlations are calculated during the period from Jan 1972 – Dec 2012. 

Given that all of these measures show some level of persistence, understanding the performance of cross-asset risk factors 
in various market regimes (growth, inflation, volatility, etc.) can influence factor selection and risk allocation decisions. 
For instance, carry strategies typically work well as long as the market is in a low volatility environment. To properly 
allocate to a carry strategy, an investor doesn’t have to know when volatility will decline, but rather increase carry 
exposure once volatility declined into a new (low volatility) regime. In the next section we analyze the performance and 
risk properties of risk factor styles (traditional, momentum, value, carry, volatility) and test their performance in various 
market regimes. 
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Traditional Assets 
 
The traditional asset classes or ‘betas’ include: Equities, Rates (Government bonds), Credit (Corporate bonds), 
Commodities, and Currencies. Additionally, many investors classify long Volatility exposure as a traditional asset class. 
Traditional asset classes represent the core risk factors of most investment portfolios. They are also the building blocks for 
alternative risk factors.  For Equities and Bonds, it is common to introduce geographic designations such as Developed 
market Americas, Europe and Asia, Emerging Markets and Frontier Markets (see Figure 4 on page 12 for traditional asset 
and region designations). Commodities can further be classified by type (e.g. Precious metals, Industrial Metals, Energy, 
Agricultural commodities, etc.). Currency pairs can involve G10 countries, Developed, Emerging market currencies or any 
cross-regional pair. Given the rapid growth of derivative markets over the past decade, many investors include Volatility in 
the list of traditional asset classes. Volatility can be traded via options on traditional assets and directly via volatility 
products (e.g. futures on volatility, variance swaps, etc.). 

Figure 8 below shows the market capitalization of publicly traded traditional asset classes. For equities and bonds we show 
the face value of securities outstanding globally (credit includes non-financial debt only, i.e. excludes ~$35T of financials 
debt). Commodities include the notional amount of listed and over the counter commodity based financial instruments (e.g. 
rather than the value of physical reserves) 7. Currency ‘capitalization’ represents the notional value of currency derivatives 
such as forwards, swaps and options. Finally, the size of the options market includes notional exposure of all Equity, Bond, 
Currency and Commodity option contracts (assuming at-the-money options, i.e. 50% exposure to the contract size, i.e. ’50-
delta’), rather than the volatility content of options. The volatility content of these options will depend on several factors 
such as asset volatility, average maturity and strike of each instrument (e.g. the volatility content will be higher for an 
equity option compared to a rate option of the same specification, due to the higher volatility of equities).  

Figure 9 further breaks down Equities and Bonds by geographical designation, Options value by underlying asset, and 
Currency and Commodities by type of instrument (options and delta one products such as forwards, swaps and futures). 

 
 
Traditional assets can be traded in many different ways. For instance, investors can directly trade portfolios of stocks and 
bonds, trade linear derivative products based on these assets such as futures, swaps and ETFs, or trade non-linear derivative 
products such as options.    

7 An alternative method of estimating the market size of commodities is using the aggregate production value. We estimate global 
production of all traded commodities to total $10.7T as of 6 Dec 2013. See our report Commodity Flow Monitor for details. 

Figure 8: Market Size of Traditional Asset Classes in $T 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy, BIS, Bloomberg.  

Figure 9: Market Size for Traditional Assets, Geographical Regions 
and Product types in $Bn 
 
 

 
 
 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy, BIS, Bloomberg.  
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The bulk of traditional assets are held by investors implementing simple buy-and-hold strategies in which risk premia are 
captured as asset yield or long-term price appreciation. Much is written about traditional asset classes, and the drivers of 
their prices. For instance, J.P. Morgan research publishes comprehensive annual outlooks for each asset class. These 
outlooks include an overview of past market developments and performance forecasts for the year ahead, and can be found 
on the J.P. Morgan Markets site. In the Appendix, we provide some general theoretical considerations for the existence of 
risk premia based on economic models and investor behavior.  

 
To illustrate the basic properties of traditional risk factors, we examined the performance and risk profiles of these asset 
classes over the past 40 years. In particular, we examined returns, volatility, tail risk, performance ratios and correlation 
metrics. In addition, we have compared asset performance under different economic and market regimes. While these 
properties of traditional assets are well known, readers can compare them to the same metrics for alternative risk factors 
that we present later in the section.  

 Our simplified models for traditional asset classes used throughout the report are: 

Equities: Excess return of the S&P 500 total return index (index return less 1-month cash yield)8;  

Rates and Credit: Total return of equally weighted monthly rolling positions in 5-year, 10-year and 30-year constant 
maturity Treasury bonds minus 1-month cash yield; 

Currencies: A short position in the US Dollar Index (DXY) as an approximation of an investment in major currencies 
versus USD. 

Commodities: Excess return of S&P GSCI Commodities Index that includes energy, industrial and precious metals, 
agricultural and livestock products. 

Performance and risk properties of traditional asset classes over the past ~40 years (1972 to 2012) are shown in Table 3 
below. In our sample, Treasury bonds outperformed all other assets with a 9.3% annual compounded excess return, and a 
Sharpe ratio of 1.26. Bonds outperformed on other risk-adjusted measures as well (e.g. draw-down, Sortino ratio, Calmar 
ratio, Pain ratio, etc). The outperformance of bonds was largely due to a secular decline in yields since the early 1980s, 
stable US inflation and the adoption of US Treasury bonds as the primary global reserve asset. If we examine Treasury 
bond data on a longer horizon during 1928-2012, the average annual excess return and Sharpe ratio were weaker at 3.7% 
and 0.45, respectively. This Treasury outperformance will introduce a bias towards models that overweight bond based 
risk factors (e.g. Bond Beta, or Bond momentum) and risk models that overweight low risk assets (e.g. Risk Parity). 

Equities and Commodities beta returned 2.7% and 3.3% per annum respectively, with higher realized volatilities and 
lower Sharpe ratios. The USD index returned approximately zero with significant volatility. 

During the sample period, all traditional beta factors exhibited ‘fat tails’ (positive excess kurtosis), as periodic 
materialization of financial, geopolitical, and macroeconomic crises resulted in sharp losses for long-only positions in 
traditional assets. The co-Kurtosis between Treasuries and Equities was negative (suggesting use of Treasury bonds as a 
safe haven from equity market risks), and Commodities had negative co-Kurtosis with Bonds (suggesting their use as 
inflation hedge). 

 

 

8 We used S&P 500 index due to longest available trading history. The index is highly correlated to a global MSCI All-Country World 
index (~90% correlation during 1988-2012). 
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Table 3: Performance-Risk metrics for Cross-Asset Traditional beta Factors during 1972-2012. 
 Traditional-

Equities 
Traditional-

Bond 
Traditional-
Currencies 

Traditional-
Commodities 

Average (%) 3.9 9.2 0.4 5.3 
CAGR (%) 2.7 9.3 0.0 3.3 
STDev (%) 15.6 7.3 8.9 20.3 
MaxDD (%) -59.0 -17.0 -51.3 -67.8 
MaxDDur (in yrs) 14.6 2.0 34.2 13.5 
Sharpe Ratio 0.25 1.26 0.05 0.26 
Sortino Ratio 0.35 2.58 0.06 0.39 
Calmar Ratio 0.24 1.33 0.03 0.24 
Pain Ratio 0.16 4.59 0.02 0.19 
Reward to 95VaR 0.04 0.33 0.01 0.05 
Reward to 95CVaR 0.03 0.22 0.01 0.04 
Hit Rate 0.57 0.67 0.52 0.54 
Gain to Pain 1.21 2.71 1.04 1.23 
Skewness -0.46 0.64 -0.24 0.05 
Kurtosis 1.87 3.87 0.75 2.37 
Correl with SPX 1.00 0.13 0.12 0.10 
Correl with UST 0.13 1.00 0.17 -0.18 
CoSkew with SPX -0.46 0.05 0.04 -0.21 
CoSkew with UST 0.09 0.64 0.12 -0.20 
CoKurt with SPX 1.87 -2.58 -2.63 -2.27 
CoKurt with UST -2.18 3.87 -1.50 -4.13 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

The correlation between traditional assets is a fascinating subject. Levels of correlations are often influenced by 
macroeconomic, geopolitical, and investor behavioral factors. For a detailed overview of the drivers of cross-asset 
correlation and developments over the past decades, see our report Rise in Cross Asset Correlations (2011). Changes in 
market micro-structure such as the introduction of new products and trading styles can also influence correlation between 
traditional assets [e.g. see our report Why we have correlation bubble (2010)]. Figure 10 shows the trailing 18-month 
correlation between equities and rates as well as the average correlation among the four traditional beta factors. One can 
notice a sharp increase of cross-asset correlations during the global financial crisis (since 2008), and a change in rate-
equity correlation post 1997/1998 market crisis. Most recently, the correlation of traditional assets declined as a result of 
the unprecedented Quantitative Easing program by the Federal Reserve. Over the past 6 months, the correlation between 
bonds, stocks and commodities declined as the fear of tapering impacted investors’ behavior (see our Cross-asset 
correlation June 2013 and October 2013 updates). 

 

Figure 10:  Rolling 18m correlation for Cross-Asset Traditional Beta  

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 11: Performance of  Cross-Asset Traditional Beta Factors 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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The performance of traditional asset classes is heavily influenced by macro economic and market technical regimes. In 
Table 4 below we summarize annualized average returns (and related t-statistics, in parenthesis) for the traditional asset 
classes under different regimes of growth, inflation, volatility, funding and market liquidity. 

Table 4: Performance (t-statistics*) of traditional factor styles under different macro/market regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Traditional- 
Equities 

3.08 3.05 5.57 2.96 11.13 -2.65 8.50 8.85 -5.66 -1.14 7.93 4.90 -12.56 10.72 13.53 
(-0.24) (-0.25) (0.48) (-0.27) (2.14) (-1.88) (1.34) (1.44) (-2.79) (-1.46) (1.17) (0.29) (-4.89) (1.99) (2.82) 

Traditional - 
Bond 

11.71 10.45 5.34 7.68 12.79 6.92 9.47 6.34 11.69 9.11 9.38 9.01 6.94 11.00 9.56 
(1.59) (0.80) (-2.39) (-0.92) (2.30) (-1.38) (0.19) (-1.76) (1.57) (-0.03) (0.13) (-0.10) (-1.39) (1.14) (0.25) 

Traditional –
Currencies 

-2.11 3.95 -0.60 2.29 1.05 -2.16 2.33 -0.68 -0.41 -1.42 -0.22 2.89 1.60 -0.17 -0.19 
(-1.28) (1.80) (-0.51) (0.95) (0.33) (-1.29) (0.97) (-0.56) (-0.42) (-0.93) (-0.32) (1.26) (0.60) (-0.30) (-0.31) 

Traditional -
Commodities 

-2.77 3.54 15.19 7.84 3.13 5.03 8.42 1.35 6.19 1.41 10.06 4.49 3.04 12.54 0.37 
(-1.81) (-0.40) (2.21) (0.56) (-0.50) (-0.06) (0.69) (-0.89) (0.19) (-0.87) (1.06) (-0.18) (-0.51) (1.61) (-1.10) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * The t-statistics shown in parentheses is from a two-sample t-test from comparing factor performance under the particular regime 
versus factor performance out of the regime. 

From this Table, we can highlight a few observations. For instance, high growth is positive for commodities and equities 
and it negatively affected Treasury bonds. USD depreciated during a mid-growth environment and appreciated in low and 
high growth environments (perhaps due to inflow of capital during high growth and “flight to quality” during low growth).  
Both high and low inflation was detrimental to equities, and high inflation negatively affected Treasury bonds (consistent 
with various studies that inflation destroys purchasing power and business sentiment, while deflation usually coincides 
with recessions). High volatility hurts equities and commodities, but is positive for bonds due to their relative safe-haven 
status. On the other hand, low volatility generally benefits risky assets and results in bond outflows. Funding and market 
liquidity measures are both positively related to equities and negatively related to USD.  

Table 5 summarizes the exposure of traditional factors to macro/market regime factors over the full time period from 1972 
to 2012. We report regression coefficients and t-statistics. Results for liquidity factors are after controlling for growth and 
inflation factors. 

Table 5: Traditional factors’ exposures (t-stats*) to macro/market regime factors over the full sample period 
 Growth Inflation Volatilities FundLiq MktLiq 
Traditional-Equities 0.21 -0.30 -1.15 1.07 1.22 
 (1.03) (-1.48) (-5.87) (3.60) (6.15) 
Traditional-Bond -0.15 -0.06 0.30 -0.01 -0.04 
 (-1.56) (-0.59) (3.17) (-0.08) (-0.37) 
Traditional-Currencies 0.09 -0.17 -0.03 0.09 -0.15 
 (0.81) (-1.42) (-0.22) (0.54) (-1.26) 
Traditional-Commodities 0.82 -0.09 -0.92 -0.35 -0.05 
 (3.12) (-0.35) (-3.51) (-0.90) (-0.19) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. *The t-statistic shown in parentheses is from regression of factor return versus respective regime factor. The results for Funding 
liquidity and market liquidity are after controlling for growth and inflation factors. 

 
In the rest of this Chapter, we will perform the same performance, risk and regime sensitivity analyses for simple models 
of alternative risk factors. 
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Carry  
 
Carry risk factors are designed to take advantage of the outperformance of higher yielding assets over lower yielding 
assets. Implementation of a Carry strategy typically involves borrowing at a lower cost to fund and hold a higher yielding 
asset.  

Carry strategies are adopted by investors across most asset classes, but are especially popular in currencies and fixed 
income. In these assets, carry is defined simply as a differential of bond yields, or differential of local interest rates for 
currencies. Perhaps the most popular Carry strategy is currency carry. The persistence of a total return advantage for 
higher yielding currencies among major countries was a well-known phenomenon post Brenton-Woods in the early 1970s. 
Currency carry trades are often implemented on G10 currency pairs, emerging market pairs, or global baskets (see for 
example Investment Strategies No. 12: JPMorgan Carry-to-Risk Primer, Investment Strategies No. 33: Rotating Between 
G-10 and EM Carry).  

Carry strategies are also common in the fixed income space, where they can be implemented using cash or derivative 
instruments. For instance, in a popular rates carry strategy, an investor buys the developed market government bonds with 
the highest yield, and sells those with lowest yield (see Investment Strategies No. 15: A cross-market bond carry strategy)  
In the Credit space, investors can implement a carry strategy via index credit default swaps to be long high and short low 
yielding corporate markets in a risk-controlled fashion  (see Investment Strategies No. 36: Carry-to-Risk Credit Indices). 

In commodities, Carry is often implemented as a Curve Slide strategy in which an investor is long the most Backwardated 
(downward sloping) commodity futures and short contracts that are in Contango (upward sloping). These strategies are 
often implemented on near term contracts of individual commodities, but can be generalized to take advantage of the slide 
differential between any pair of commodity contracts. These strategies have been profitable over the past decade, and had 
a solid performance even during the 2008 crisis. A detailed overview of commodity carry strategies can be found in 
(Investment Strategies no. 54: Profiting from slide in commodity curves). 

Carry risk factors are not commonly used in Equity risk factor investing. The closest proxies for carry are income and 
dividend based risk factors (see Investment Strategies no. 96: Dividend Yield Factors). Historically, dividend yield has 
been considered a value strategy, as high yield often implies low growth or reflects a recent price decline. Since the last 
financial crisis, stock dividend factors have behaved more like a quality factor, as dividend stocks exhibited higher 
correlation to government bonds. An increasing number of cross-asset investors have started to treat dividend yield as a 
standalone income generating factor, while neutralizing value and quality exposures. Furthermore, investors look to 
combine dividend yield with additional forms of income such as call option writing. 

Carry strategies are also implemented in the Volatility space. The simplest carry strategies involve selling volatility to 
capture its risk premium (e.g. see S&P 500 Variance Bonds (2005), and Investment Strategies No. 75: Risk Premia in 
Volatile Markets). Implied volatility curves are typically upward sloping, so investors can also collect volatility slide 
carry. Volatility carry strategies often take advantage of the mispricing of volatility risk premia, and despite sharing many 
features of carry and relative value strategies, we will classify them separately as volatility risk factors. 
 
There are several risks that are common to carry strategies across assets. The first is related to the fact that higher yielding 
assets tend to be more risky. Hence a portfolio that is long a high yielding asset and short a low yielding asset may have 
net short volatility exposure. A common approach is thus to compare carry adjusted for the asset’s volatility, which is 
called the Carry-to-risk approach (e.g. see Investment Strategies No. 10: JPM FX and Commodity Barometer, and 
Investment Strategies No. 12: JPM Carry to Risk Primer).  

  

29 

https://jpmm.com/research/content/MMRC-228981-1
https://jpmm.com/research/content/MMRC-391143-1
https://jpmm.com/research/content/MMRC-391143-1
https://jpmm.com/research/content/MMRC-308105-1
https://jpmm.com/research/content/MMRC-404057-1
https://jpmm.com/research/content/GPS-285504-0
https://jpmm.com/research/content/GPS-1277822-0
https://jpmm.com/research/content/GPS-999930-0
https://jpmm.com/research/content/GPS-999930-0
https://jpmm.com/research/content/MMRC-209537-1
https://jpmm.com/research/content/MMRC-228981-1


 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

Carry strategies also tend to underperform due to rising volatility, cycle changes or changes in central bank policies. For 
instance, a currency carry pair may underperform despite positive carry if the long currency starts depreciating due to a 
weak economy or declining rates. Simple carry strategies can often be improved by considering not just the levels of carry 
(e.g. the rate differential in different currencies) but also recent changes in yield differential that may indicate longer dated 
trends (e.g. see Investment Strategies No. 47: Alternatives to Standard Carry and Momentum in FX).  

Despite the common properties of carry trades in various asset classes, carry trade implementation in credit, currencies, 
rates and commodities may be driven by different sets of fundamental risks. A portfolio of carry trades across asset classes 
can diversify some of the asset specific carry risk and enhance risk-adjusted return. This was illustrated in a simple model 
of cross-asset carry strategies Investment Strategies No. 21: Yield Rotator. 

Perhaps the most significant risk for carry strategies is the simultaneous unwind of carry positions. This can lead to a tail 
event for the Carry risk factors, such as the one that occurred on the onset of the 2008 financial crisis. The decline of 
simple currency carry strategies in 2008 erased years of gains (e.g. see Figure 13 below). 

To illustrate the properties of the Carry risk factor, we constructed and tested Carry ‘toy models’ in equities, fixed income, 
currencies and commodities over the past 40 years. Our simplified Carry models are: 

Carry – Equities: Excess return of a long position in three equity indices with the highest dividend yield and a short 
position in the three equities indices with the lowest dividend yield (monthly rebalanced). Our index universe consisted of 
country equity benchmarks for Australia, Canada, France, Germany, HK, Italy, Japan, Netherlands, Spain, Sweden, 
Switzerland, the UK, and the US.   

Carry - Rates and Credit: Excess return of a long position in three 10-year government bonds with the steepest yield 
curves and a short position in the three 10-year government bonds with the flattest yield curve (monthly rebalanced). Our 
universe was comprised of government bonds from Australia, Belgium, Canada, Germany, Denmark, Japan, Sweden, the 
UK and the US. 

Carry – Currencies: Excess return of a long position in the top-three yielding currencies and a short position in the 
bottom-three yielding currencies (monthly rebalanced).We used G10 vs. USD pairs for the currency universe, and 
domestic short-term deposit rates for yields. 

Carry – Commodities: Excess return of a long position in the three most backwardated and a short position in the three 
least backwardated (steepest contango) commodity futures (monthly rebalanced). The commodity futures universe was: 
Brent and WTI oil, Heating Oil, Gasoil, Gasoline, Natural Gas, Gold, Silver, Cocoa, Coffee, Cotton, Feeder Cattle, Wheat, 
Lean Hogs, Live Cattle, Soybeans, Sugar, and Wheat. 

Table 6 below shows the risk-reward statistics during the sample period from Jan 1972 to Dec 2012. During this time 
period, all the Carry strategy factors exhibited better risk-reward profiles than traditional Equity and Commodity assets. 
Currency and Equity Carry strategies exhibited the highest Sharpe Ratios.  
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Table 6: Performance-Risk metrics for Cross-Asset Carry Factors during 1972-2012 
 Carry- 

Equities 
Carry- 
Bond 

Carry-
Currencies 

Carry-
Commodities 

Average (%) 8.1 2.5 5.7 4.4 
CAGR (%) 7.5 2.3 5.5 3.6 
STDev (%) 13.3 7.4 7.9 12.7 
MaxDD (%) -21.8 -31.8 -31.4 -36.3 
MaxDDur (in yrs) 3.1 27.0 5.5 16.8 
Sharpe Ratio 0.61 0.34 0.72 0.34 
Sortino Ratio 1.26 0.60 1.08 0.53 
Calmar Ratio 0.61 0.38 0.60 0.19 
Pain Ratio 1.86 0.17 1.29 0.39 
Reward to 95VaR 0.15 0.09 0.13 0.06 
Reward to 95CVaR 0.11 0.05 0.09 0.05 
Hit Rate 0.54 0.53 0.63 0.53 
Gain to Pain 1.78 1.37 1.74 1.29 
Skewness 3.99 2.27 -0.75 0.04 
Kurtosis 44.53 28.36 2.80 0.83 
Correl with SPX -0.14 -0.06 0.22 -0.03 
Correl with UST 0.01 -0.15 -0.14 -0.05 
CoSkew with SPX 0.28 -0.03 -0.18 -0.10 
CoSkew with UST -0.04 -0.25 0.03 -0.03 
CoKurt with SPX -4.28 -3.24 -1.76 -2.51 
CoKurt with UST -3.22 -4.61 -3.74 -3.49 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
The large draw-downs and long draw-down durations experienced by carry strategies were historically comparable to 
traditional equity and commodity assets.  

Despite this, carry strategies provide significant diversification benefits to a long-only equity-bond portfolio. For instance, 
the pairwise correlation between carry strategies and equity/bond betas was close to zero over the whole sample. 
Similarly, the co-kurtosis between carry strategies and equities and bonds was negative, indicating possible tail risk 
diversification benefit9. However, the Correlation and tail risk benefits of carry strategies were significantly eroded during 
the global financial crisis of 2008-2009.  Figure 12 shows the trailing 18-month average correlation of equities and the 
four carry strategy factors, between bond beta and carry strategy factors as well as the average correlation among the four 
carry factors. We note that outside of major crises such as the Latin America Debt Crisis in the early ‘80s and 2008-2009 
Global Financial Crisis, the average correlation among carry strategies was fairly low. During the Global Financial Crisis, 
both the correlation of carry strategies between themselves, and the correlation of carry strategies to equities and market 
volatility increased significantly.  

The poor performance of carry strategies during the financial crisis damaged the perception of carry strategies as a 
portfolio diversifier. While the correlation between carry strategies has decreased since, the correlation between equities 
and carry strategies stayed elevated, reducing interest in simple carry strategies. 

9 One may note that the Co-Kurtosis between the G10 Currency Carry factor and Equity beta (SPX) was -1.76 implying that Currency 
Carry could have provided some tail hedge benefit to SPX during 1972-2012. This may seem counter intuitive at first sight as the 
correlation between Currency Carry and Equity Traditional beta was at +54% during crisis episodes (see Table 18 on page 47), which 
suggests the Currency Carry was a poor tail hedge for Equity beta. To explain this, we should note that Currency Carry did provided 
some tail hedge to SPX during 1972-2001 (first three decades of our sample period) with a co-Kurtosis of -2.8: For example, Equity beta 
(in excess return) returned -31% during Aug 87-Nov 87 (1987 market crash) and -15% during Apr 98-Aug 98 (Asian Financial Crisis, 
Russia Default, LTCM), whereas Currency Carry factor didn’t see dramatic sell-offs and returned -0.9% and 0% respectively. However, 
the tail-hedge ability of Currency Carry disappeared during the 2007-2008 Global Financial Crisis when Equity beta returned -53% 
during Oct 07-Feb 09 and Currency Carry tumbled -30% during the same period. 
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In addition to performance, volatility and correlation tests, we examined the Carry factors’ exposure to macro economic 
and market regimes of growth, inflation, volatility, funding liquidity and market liquidity.  Table 7 below summarizes the 
annualized average performance for the Carry ‘toy models’ under different market regimes.  

Table 7: Performance (t-stats*) of Carry factor styles under different macro/market regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Carry- 
Equities 

11.59 2.81 10.58 8.93 7.39 7.43 6.50 1.03 15.59 3.69 11.74 6.99 12.45 9.55 3.74 
(1.02) (-1.66) (0.68) (0.31) (-0.24) (-0.11) (-0.44) (-2.02) (2.39) (-0.91) (1.16) (-0.39) (1.12) (0.43) (-1.45) 

Carry- 
Bond 

0.10 2.52 4.90 1.13 -1.44 8.00 5.28 1.71 0.53 2.59 2.13 2.80 1.00 5.50 1.02 
(-1.48) (0.01) (1.47) (-0.85) (-2.46) (3.36) (1.70) (-0.49) (-1.21) (0.05) (-0.23) (0.18) (-0.92) (1.84) (-0.91) 

Carry-
Currencies 

4.75 6.09 6.29 5.95 4.60 6.63 5.52 7.22 4.39 4.98 4.62 7.53 4.22 4.28 8.63 
(-0.55) (0.22) (0.33) (0.13) (-0.64) (0.51) (-0.11) (0.86) (-0.75) (-0.42) (-0.62) (1.04) (-0.85) (-0.81) (1.67) 

Carry-
Commodities 

7.04 0.20 5.84 4.79 -0.23 8.68 4.43 7.98 0.67 4.48 6.14 2.46 4.50 5.55 3.03 
(0.95) (-1.48) (0.53) (0.15) (-1.66) (1.52) (0.02) (1.29) (-1.31) (0.04) (0.63) (-0.68) (0.05) (0.42) (-0.47) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * The t-statistics shown in parentheses is from a two-sample t-test from comparing factor performance under the particular regime 
versus factor performance out of the regime. 

 
Table 8 shows the Carry factors’ exposures to macro/market regime factors by conducting regression tests over the whole 
40 year sample period. 

Table 8: Carry factors’ exposures (t-stats*) to macro/market regime factors 
 Growth Inflation Volatilities FundLiq MktLiq 
Carry-Equities 0.09 -0.11 0.46 -0.25 -0.35 
 (0.41) (-0.38) (2.51) (-0.57) (-1.77) 
Carry-Bond 0.13 0.17 -0.12 0.28 0.02 
 (1.39) (1.80) (-1.28) (2.00) (0.17) 
Carry-Currencies 0.03 0.03 -0.28 0.14 0.16 
 (0.32) (0.26) (-2.72) (0.90) (1.56) 
Carry-Commodities -0.02 0.09 -0.31 -0.12 -0.06 
 (-0.10) (0.56) (-1.86) (-0.51) (-0.34) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. *The t-statistic shown in parentheses is from regression of factor return versus respective regime factor. The results for Funding 
liquidity and market liquidity are after controlling for growth and inflation factors. 

 

 

Figure 12:  Rolling 18m correlation for Cross-Asset Carry factors.  

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 13: Performance of Carry Strategies over the past 40 Years 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  
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Carry strategies in all assets (apart from equities) were negatively impacted by volatility, as higher yielding assets (such as 
high yielding EM currency or bonds with wide credit spreads) tend to underperform in a high volatility environment. 
Carry unwinds during market shocks likely contributed to negative exposure to volatility as well. Equity carry strategies 
outperformed in volatile markets because higher yielding equities are often high-quality, bond-like stocks that outperform 
low yielding, growth stocks during market crises. 

Currency and Bond Carry strategies outperform when market liquidity is ample, as investors rush into higher yielding and 
riskier assets. This is consistent with academic findings that the crash risk of currency carry strategies often materializes 
during liquidity dry-ups (e.g. see Brunnermeier, Nagel, and Pedersen (2008)). For the same reason Equity carry 
underperformed in high market and funding liquidity environments, as investors move from bond-like to high growth 
stocks.   

High growth and inflation was constructive for bond carry strategies. This is likely reflecting the “yield-seeking” behavior 
during high growth/inflation periods when bond beta performs poorly. 

 
 

 
  

33 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

Momentum 
 
Momentum risk factors are designed to buy assets that performed well and sell assets that performed poorly over a certain 
historical time period. The premise of this investment style is that asset prices trend (i.e. returns have positive serial 
correlations). The existence of such a price momentum effect would go against the hypothesis of efficient markets which 
states that past price returns alone can not predict future performance. Despite theoretical arguments against it, price 
momentum strategies are documented to produce positive returns across a range of assets and are an important part of 
many investment portfolios. 

Reasons for this momentum effect can be found in investors’ behavior, supply and demand friction, positive feedback 
loops between risk assets and the economy, and even in the market microstructure.  

The behavioral reasons are related to biases of under-reaction and over-reaction to market news as different investors may 
react to the arrival of new information with different speeds. After initial under-reaction to news, investors often 
extrapolate past behavior and create price momentum. An example of this was the performance of technology stocks 
during the late 90s market bubble. In addition, the psychology of “fear and greed” often causes investors to continue 
selling losing assets and increase exposure to winning assets.   

Momentum can also have more fundamental causes, which is the positive feedback between risk assets and the economy. 
For instance, a stronger economy boosts equities which creates wealth effects that in turn boost spending and the 
economy, which again boost equities, etc. (see The J.P.Morgan View, 28-Nov-2013).  Positive feedback between price 
action and the economy should make momentum in equities and credit longer lasting than in bonds, FX, and commodities, 
where negative feedback keeps momentum short lived, prone to reversals, and requiring a much shorter investment 
horizon. 

Market Microstructure effects can also create price momentum. Microstructure effects are often closely related to 
behavioral patterns as investors seek to invest in products and strategies that mimic their behavioral biases. For instance, 
the trading wisdom of “cut loses and let profits run” causes investors to implement trading strategies such as stop loss, 
CPPI, dynamical delta hedging, and option based strategies such as protective puts. In all of these trading styles, an 
investor in advance commits to selling assets when they underperform and buying when they outperform – thus creating a 
momentum effect. Similarly ‘risk parity’ strategies tend to buy low volatility assets (often positive performance) and sell 
high volatility assets (often negative performance). The mechanical rebalance of these strategies and products can further 
reinforce price momentum.  

Another cause of momentum can be in the mismatch of asset Supply and Demand cycles. For instance, the commodity 
production cycle is often slow to adjust to demand trends e.g. it takes several years to expand oil production, which may 
lag increased demand from a booming economy. Persistent shortages of supply can develop into an upward price 
momentum. 

Momentum in Equities is a well researched topic. One of the early papers to document equity momentum was published 
by Jegadeesh, and Titman (1993). A detailed description of common equity momentum factors can be found in J.P. 
Morgan equity factor reference books (see Investment Strategies no. 103: Equity Risk Factor Handbook). Equity 
Momentum trends manifest themselves globally, and are more prominent in small cap and emerging markets, in part 
reflecting lower efficiency of these markets. Among the large markets, Japan however has been an exception where 
momentum has failed since its equity bubble burst in early ‘90s. While equity momentum tends to exhibit effectiveness 
across the various time horizons, it shows greatest effectiveness over medium- to longer-term horizons, while over short-
term periods the reversal effect is more pronounced. Equity momentum tends to fail during market reversals, such as its 
failure during the rally of March 2009 (see Figure 15 below). High levels of volatility over the past years added an 
additional layer of challenge to equity Momentum strategies. Some of the techniques have looked at better controlling 
momentum risk to take advantage of the momentum over different time horizons, or conditioning momentum based on 
fundamental and technical data. Examples of such equity momentum strategy improvements can be found in our reports 
Enhanced Price Momentum, and Trend is Your Friend reports (see also Investment Strategies no. 89: Equity Momentum), 
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The existence of momentum in Commodities is well known to practitioners, with a dedicated group of Commodity 
Trading Advisors (CTAs) taking advantage of momentum effects over the past 30 years. In addition to behavioral effects, 
momentum in commodities is also driven by inelastic supply and demand as well as a mismatch between commodity 
production cycles and business/sector cycles. This has caused the momentum effect in commodities to be more 
pronounced than in other asset classes (see Table 9 comparing momentum performance across asset classes). For instance, 
the supply cycle for oil (exploration and production) can be significantly longer than the cyclical or seasonal demands for 
the commodity. A detailed review of commodity momentum strategies can be found in our report: Investment Strategies 
No. 25: Momentum in Commodities) as well as in reports by Erb and Harvey (2006) and Miffre and Rallis (2007).  In our 
research, we found that over long time-periods commodity momentum had strong performance when applied to individual 
commodities (absolute momentum) as well as on a relative basis between commodities (relative momentum). Long-short 
commodity portfolios constructed by combining absolute and relative momentum signals tend to outperform simple 
momentum strategies. Further improvements to commodity momentum strategies can be accomplished by including short-
term trading rules to minimize the loss in case of a momentum breakdown. More recently (in the past 2-3 years) many 
commodity strategies failed to deliver the strong returns witnessed before the market crisis. Some potential reasons for this 
underperformance is the lack of clear trends in commodity demand post global crisis, as well as potential capacity 
limitations for the simplest commodity momentum strategies. 

Momentum effects have also been documented in the Fixed Income space. For instance our report on momentum in 
German government bonds (Investment Strategies No. 27: Euro Fixed Income Momentum Strategy) demonstrates a strong 
momentum signal with a 2-3 weeks time horizon, and the report on EM bonds momentum (Investment Strategies No. 44: 
Momentum in Emerging Markets Sovereign Debt) demonstrates a momentum signal with a slightly longer time horizon 
(~4 weeks). These studies point to a shorter time scale of fixed income momentum compared to those typical in equities 
and commodities. The existence of fixed income momentum across global bond markets was shown in the work of 
Asness, Moskowitz, Pedersen (2008) by using standard ~12-1 month momentum measure. The secular decline in bond 
yields over the past decade helped the performance of many models based on absolute price momentum. When examining 
the merits of a bond momentum models, investors should keep in mind that a repeat of similar trends is unlikely. 
 
The momentum effect in Developed Market Currencies was tested and demonstrated for example in the research of 
Okunev and White (2003). Currency spot momentum strategies have not performed well since the onset of financial crisis. 
The reasons for poor performance likely include increased market volatility and perhaps capacity issues for these 
strategies. Improvements to currency momentum strategies can be achieved, for instance, by combining currency and rate 
momentum (e.g. see spot and rate momentum model in JPM Daily FX Alpha Chart Pack). Currency momentum signals 
can also be used to allocate between different factor exposures. For instance, in one of our reports we proposed using 
currency momentum to allocate between EM and DM currency carry strategies (Investment strategies No. 33: Rotating 
Between G-10 and Emerging Markets Carry). 
 
Given that Volatility is a range-bound, mean reverting measure, Momentum strategies in volatility are not common. The 
persistence (autocorrelation) of asset returns, in volatility strategies manifests itself as persistence of volatility levels. 
Strategies that exploit the persistence of volatility levels are often categorized as carry, value or volatility strategies, rather 
than momentum. However, there are momentum effects that are directly related to, and often caused by, derivative trading 
strategies. In our report on the Market Impact of Derivatives Hedging, we showed that gamma hedging of equity index 
options can cause intraday price momentum. The gamma hedging intraday momentum effect is most pronounced during 
times of high volatility and low liquidity, which complements well other momentum strategies that typically underperform 
in those market conditions. In addition to intraday momentum, option hedging can cause Price Patterns of Weekly 
Momentum during option expiry cycles.  

To avoid asset specific momentum risk, investors can combine momentum strategies in multiple assets. Cross-sectional 
Momentum refers to systematic strategies exploring the persistence of relative outperformance/underperformance across a 
set of assets. In our report on cross-asset momentum (Investment Strategies No. 14: Exploiting Cross-Market Momentum), 
we explored properties of such a model and showed that a cross-asset momentum model outperformed all of the traditional 
and alternative assets included in the universe. Applying the Markowitz mean-variance optimization on the composition of 
this cross-asset momentum portfolio provided further improvements to strategy performance (see Investment Strategies 
No. 35: Markowitz in tactical asset allocation). 
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To illustrate some universal properties of momentum strategies, as well as their behavior under different market regimes, 
we construct simple momentum indices for equities, government bonds, currencies and commodities, using trailing 12 
month returns.10  Specification of our momentum models are: 

Momentum – Equities: Excess return of a long position in three equity indices with the highest past 12 month returns and 
a short position in the three equities indices with lowest past 12 month returns (monthly rebalanced); Our index universe 
of country equity benchmarks was: Australia, Canada, France, Germany, HK, Italy, Japan, Netherlands, Spain, Sweden, 
Switzerland, the UK, and the US.   

Momentum - Rates and Credit: Excess return of a long position in the three 10-year government bonds with the highest 
past 12 month returns and a short position in the three 10-year government bonds with lowest past 12 month returns 
(monthly rebalanced); The universe was comprised of government bonds from Australia, Belgium, Canada, Germany, 
Denmark, Japan, Sweden, the UK and the US. 

Momentum – Currencies: Excess return of a long position in the three G10 currencies with the highest past 12 month 
returns and a short position in the three G10 currencies with lowest past 12 month returns (monthly rebalanced). 

Momentum – Commodities: Excess return of a long position in the three commodity futures with the highest past 12 
month returns and a short position in the three commodity futures with lowest past 12 month returns (monthly 
rebalanced); The commodity futures universe was: Brent and WTI oil, Heating Oil, Gasoil, Gasoline, Natural Gas, Gold, 
Silver, Cocoa, Coffee, Cotton, Feeder Cattle, Wheat, Lean Hogs, Live Cattle, Soybeans, Sugar, and Wheat. 

Table 9 below shows the risk-reward statistics for these momentum strategies during the sample period Jan 1972 to Dec 
2012. During this 40 year period, the Commodity momentum factor yielded the highest return, and Bond and Commodity 
momentum factors exhibited the highest Sharpe ratios. 
 

Table 9: Performance-Risk metrics for Cross-Asset Momentum Factors during 1972-2012 
 Momentum-

Equities 
Momentum-

Bond 
Momentum-
Currencies 

Momentum-
Commodities 

Average (%) 6.2 3.7 2.4 8.2 
CAGR (%) 4.7 3.5 2.0 7.2 
STDev (%) 18.1 6.5 9.0 15.4 
MaxDD (%) -37.5 -23.5 -27.9 -33.3 
MaxDDur (in yrs) 14.4 10.4 13.1 5.7 
Sharpe Ratio 0.34 0.56 0.26 0.53 
Sortino Ratio 0.54 0.88 0.37 0.86 
Calmar Ratio 0.35 0.80 0.19 0.34 
Pain Ratio 0.45 0.88 0.25 0.93 
Reward to 95VaR 0.07 0.11 0.04 0.11 
Reward to 95CVaR 0.05 0.07 0.03 0.08 
Hit Rate 0.52 0.60 0.59 0.56 
Gain to Pain 1.32 1.57 1.23 1.51 
Skewness 0.47 -0.04 -0.35 0.01 
Kurtosis 6.02 2.80 1.89 1.36 
Correl with SPX -0.12 0.08 0.00 -0.02 
Correl with UST 0.03 0.12 0.01 0.06 
CoSkew with SPX -0.11 -0.15 -0.18 -0.03 
CoSkew with UST -0.05 0.07 0.01 0.08 
CoKurt with SPX -3.39 -2.10 -2.53 -2.58 
CoKurt with UST -3.09 -2.20 -2.87 -2.56 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 

10 Another well documented method for cross-sectional momentum on stocks uses the MOM2-12 (based on past 12 month cumulative 
return, skipping the most recent month's return) method to implement momentum indices to avoid near-month mean-reversion. 
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All momentum strategies displayed significant fat-tails (positive excess kurtosis), a property that related to “crash risk”, 
with equity momentum exhibiting the highest tail risk and draw-downs arising from momentum crashes.  

On the positive side, momentum strategies generally provided good diversification benefits and even tail risk 
diversification to traditional assets. This is evident from low correlation between momentum strategies and traditional 
assets, and negative Co-kurtosis between momentum strategies and traditional betas for Momentum strategies in all asset 
classes. 

Figure 14 shows the trailing 18-month average correlation between equity beta and the four momentum strategy factors, 
rates and momentum strategy factors as well as the average correlation between the four momentum factors. Correlation 
between momentum strategies was relatively low, but on average positive. We note a trend of increasing correlation 
between the various momentum strategies, especially after the global financial crisis. Historically, momentum strategies 
provided good diversification to equity portfolios, as the average correlation between equity beta and momentum 
strategies dropped to -30% during the 1990-1991, and 2001-2003 recessions. 

 

Table 10 below summarizes the average performance (and related t-statistics) of our simple momentum strategies in 
different market macro and technical regimes. We also show a regression test to quantify the Momentum factors’ 
exposures to macro/market regime factors across the full sample period. Relevant sensitivity and t-statistics are reported in 
Table 11. 

 
Table 10: Performance (t-stats*) of Momentum factor styles under different macro/market regimes 

 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Momentum- 
Equities 

2.66 4.96 11.09 -2.06 15.44 5.15 7.42 10.38 0.90 9.97 5.27 3.47 5.52 9.69 3.50 
(-0.90) (-0.32) (1.22) (-2.09) (2.35) (-0.27) (0.30) (1.04) (-1.34) (0.93) (-0.24) (-0.69) (-0.18) (0.86) (-0.69) 

Momentum - 
Bond 

2.06 5.48 3.47 3.26 4.51 3.22 4.48 1.73 4.81 2.13 6.09 2.79 0.19 5.98 4.84 
(-1.12) (1.25) (-0.14) (-0.28) (0.58) (-0.31) (0.56) (-1.34) (0.78) (-1.06) (1.68) (-0.61) (-2.42) (1.60) (0.81) 

Momentum -
Currencies 

-2.15 4.72 4.58 0.06 4.20 2.86 6.74 2.25 -1.84 1.40 1.12 4.62 -0.83 5.81 2.16 
(-2.28) (1.17) (1.10) (-1.16) (0.92) (0.24) (2.19) (-0.07) (-2.12) (-0.49) (-0.63) (1.12) (-1.61) (1.72) (-0.11) 

Momentum -
Commodities 

6.28 9.38 8.91 7.37 7.98 9.24 15.30 5.55 3.71 12.00 7.19 5.37 4.54 12.73 7.29 
(-0.56) (0.35) (0.21) (-0.24) (-0.06) (0.31) (2.10) (-0.78) (-1.32) (1.12) (-0.29) (-0.83) (-1.08) (1.34) (-0.26) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * The t-statistics shown in parenthesis is from a two-sample t-test from comparing factor performance under the particular regime 
versus factor performance out of the regime. 

Figure 14:  Rolling 18m correlation for Cross-Asset Momentum 
factors 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 15: Momentum Breakdown of 2009, and performance of 
cross-asset momentum portfolio / enhanced equity momentum  

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Table 11: Momentum factors’ exposures (t-stats*) to macro/market regime factors 
 Growth Inflation Volatilities FundLiq MktLiq 
Momentum-Equities 0.44 0.15 -0.38 -0.68 0.09 
 (1.89) (0.66) (-1.61) (-1.94) (0.39) 
Momentum-Bond -0.01 0.00 -0.03 0.28 0.12 
 (-0.08) (0.03) (-0.31) (2.21) (1.38) 
Momentum-Currencies 0.26 0.07 -0.27 0.04 0.06 
 (2.21) (0.63) (-2.27) (0.21) (0.50) 
Momentum-Commodities 0.13 0.04 -0.29 -0.64 0.24 
 (0.64) (0.19) (-1.45) (-2.17) (1.19) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. *The t-statistic shown in parenthesis is from regression of factor return versus respective regime factor. The results for Funding 
liquidity and market liquidity are after controlling for growth and inflation factors. 

We note that high volatility generally hurts momentum strategies. The likely reason is the patterns of mean reversion that 
risky assets exhibit during times of economic uncertainty. This is true for currency, commodity and equity momentum 
strategies; however, bond momentum strategies outperformed in high volatility market environments, likely as a result of 
the persistent demand for safe haven instruments. We also find that momentum strategies tend to exhibit some properties 
of their underlying traditional assets. For instance, equity and commodity momentum outperformed in high growth 
environments, inflation was positive for commodity momentum, negative for bond momentum and equity momentum 
worked best in the mid-inflation regime. All of the momentum strategies exhibited strong performance during “Mid 
Market Liquidity” environments and experienced significant underperformance during periods of low market liquidity. 
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Value  
 

Value risk factors are designed to buy assets that are undervalued (cheap) and sell those that are overvalued (expensive) 
according to a valuation model. For this reason, the core of any value strategy is a model that provides a value anchor or a 
“fair-value” for the asset. This fair value can be defined as an absolute price level, a spread relative to other assets, or a 
statistical range in which asset should trade (e.g. within 2-standard deviations). Value strategies are usually implemented 
as long/short portfolios that have no exposure to other traditional or alternative risk factors. 

Value strategies capitalize on the mean-reversion of prices to their ‘fair value’. The premise is that prices are only 
temporarily driven away from ‘fair value’ by either behavioral effects (over-reaction, herding) or liquidity effects 
(temporary market impact, long term supply/demand friction). As Value relies on ‘mean-reversion to fair value’, it often 
has properties opposite to those of “Momentum” factors. Value factor style encompasses a broad array of systematic 
strategies that can include fundamental valuation, statistical arbitrage, and cross-asset relative value approaches.  

Fundamental Value strategies derive asset fair values based on economic and fundamental indicators. In fixed income, 
currencies and commodities, these include capital account balance, level and changes in economic activity, inflation, fund 
flows, etc. In equities and credit, fundamental valuation often relies on corporate metrics such as book value, cash flows, 
earnings, levels of debt, etc.  Market Value strategies often rely on statistical models and aim to capture mispricing 
caused by inefficiencies in liquidity provision. The best examples of this strategy type are Statistical Arbitrage and Index 
Arbitrage that capture the reversion of temporary market impacts over short time horizons (see Investment Strategies No. 
84: Equity Pairs Trading).  Over longer time horizons, another example of market value trades includes trading seasonality 
in equities and commodities (see Investment Strategies No. 87: Equity Factor Seasonality and CMOS: Seasonal spreads at 
the cyclical crossroads). Cross-Asset Relative Value strategies take advantage of relative mispricing of different assets. 
For instance, Convertible bond arbitrage strategies often involve relative value trading between the stock, credit and 
volatility of a single company (e.g. see Investment Strategies 85: Investing in Convertible Bonds). Other examples include 
relative value trading between Credit and Equity Volatility (Investment Strategies No. 38: A Framework for Credit-Equity 
Investing), using credit signals to trade Equities (Investment Strategies No. 81: Equity-Credit Factors) or relative value 
trades between commodities and equities (e.g. Investment Strategies No: 68 Commodity equities or futures). 

In Equities, the value investment paradigm traces its origin to the work of Graham and Dodd in the 1930s. Some of the 
common approaches to equity valuation compares a company’s market price to its book value, top line sales, bottom line 
earnings, or various cash-flow metrics.11 Not all Value factors work equally well across regions. In developed markets like 
the US, cashflow-based valuations have recently proven most effective, while in the less efficient emerging markets 
simple Value factors like book-to-price and earnings yield continue to exhibit strong returns. While in Fixed income and 
commodities Momentum is considered the antipode of Value, in Equities that role is played by Growth – a risk factor 
specific to companies12. Periods where Value worked well are characterized by large cross-sectional dispersion of stock 
valuations, which create a larger opportunity set for a Value investor (see Investment Strategies No. 94 Equity Value 
Factors). Value factors can be vulnerable to market cycles – e.g. a classic episode of Value failure was during the Tech 
bubble (Figure 17 below). Another risk in equity value investing is related to "Value traps" – companies whose valuations 
are cheap due to rapidly deteriorating fundamentals. To mitigate these risks, investors can combine value factors with 
equity specific risk factors such as Growth and Quality. Examples of these approaches include growth-at-reasonable-price 
(GARP) and quality-at-reasonable-price (QARP) factors.    
 
Fair Value models are commonly used in trading government bonds. Value models are often based on fundamental data 
influencing bond prices – for instance our model in Investment Strategies No. 67: Using unemployment to trade bonds 
takes advantage of the persistency of unemployment data. Market value signals often look for a reversion of bond yields to 
their moving averages or interpolated yield curves (Investment Strategies No. 71: Trading Rich / Cheap Signals in EM 
Sovereigns & Corporates). Most bond value models incorporate a combination of fundamental, market, and cross asset 
value signals. An example is a model that buys bonds where consensus for a country’s growth and inflation is decreasing, 

11 An alternative approach is to take the market price of the company’s entire capital structure (equity and debt) and comparing it to 
comprehensive earnings (EBITDA). 
12 Other examples of equity-specific factors include Earnings-based factors (see Investment Strategies No. 90: Earnings Factors) and 
Quality factors (see Investment Strategies No. 91: Equity Quality Factors) 
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and bond yields trade above their long term average (expecting mean reversion) as well as above the earnings yields of a 
broad local equity index (Investment Strategies No. 5: Profiting from Market Signals).  
 
Currency valuation models can be based on Purchasing Power Parity (assumes constant inflation-adjusted rates), or 
include a broad number of fundamental value indicators. An example of a fundamental currency model can be found in 
J.P. Morgan long-term fair value model update. The model produces long term currency fair values based on Productivity, 
Terms of Trade, Government debt, and Net Investment Income. As with bonds, most successful currency value models 
include fundamental, market and cross-asset value signals. Additionally currency value models often include value 
anchors predicted by other alternative factors such as carry and momentum. For instance, a currency model described in 
the Daily FX Fair Value Regressions Report, includes fundamental variables such as short-term interest rate spreads, 
commodity prices, equity volatility, and sovereign spreads. 
 
Commodity value models can be based on fundamental signals such as global IP growth and PMIs (Investment Strategies 
No. 59: Economic and price signals for commodity allocation). Commodity fundamental value models are often related to 
persistency in economic indicators. For this reason, fundamental value factors can share some similarities with commodity 
momentum factors (e.g.  the IP and PMI based commodity value model was 60% correlated to a commodity momentum 
model). Despite some overlap, fundamental factors may be quicker to identify macro economic turning points, which 
often create the greatest risk for trend-following strategies. Other fundamental value signals include demand for shipping 
capacity, inventories, inflation expectations, and others. Market value indicators in commodities are often simple mean 
reversion measures such as normalized return (e.g. Assess et al. Value and Momentum Everywhere).  
 
We have decided to classify value strategies based on volatility as a Volatility alternative risk factor and will discuss them 
in the next section. These strategies involve buying cheap and selling rich volatility to capitalize on temporary market 
dislocations, structural supply and demand imbalances, or fundamental views on the future realized volatility of 
underlying assets. However, a derivative based Value strategy worth highlighting involves buying Equity Index Dividend 
swaps. Prices of dividend swaps often trade below their fair value (e.g. aggregated analyst dividend estimates), due to 
supply via retail structured products (dealers hedging these structured products often need to sell dividends). More details 
on Dividend swap strategies can be found in Investment Strategy No. 95: Investing in Dividend Swaps.  
 
As with previous factor styles, we created ‘Toy Models’ of value strategies across asset classes and analyzed their 
performance over the past 40 years. The definition of our illustrative value models is given below: 

Value – Equities: Fama-French (1993) HML value factor. The factor is long the top decile and short bottom decile of US 
stocks ranked by book to price ratio; the universe covers all non-financial firms listed on the NYSE, AMEX and 
NASDAQ exchanges. 

Value - Rates and Credit: Excess return of monthly rolling a long position in the top-three 10-year government bonds 
with the largest increase in 10-year yields during the past three years and a short position in the bottom-three 10-year 
government bonds with the smallest increase (or largest decrease) in 10-year yields during the past three years. Our 
universe was comprised of government bonds from Australia, Belgium, Canada, Germany, Denmark, Japan, Sweden, the 
UK and the US. 

Value – Currencies: Asness et.al (2013) currency value factor which is a long/short currency portfolio based on the 5-
year change in purchasing power parity. The universe covers spot exchange rates of the following G10 currencies: 
Australia, Canada, Germany (spliced with the Euro), Japan, New Zealand, Norway, Sweden, Switzerland, the United 
Kingdom, and the United States. 

Value – Commodities: Excess return of a long position in the top-three commodity futures with the lowest valuation and 
a short position in the bottom-three commodity futures with highest valuation, where the valuation metric is defined as the 
ratio of current price relative to the average price over the past five years (monthly rebalanced). The commodity futures 
universe was: Brent and WTI oil, Heating Oil, Gasoil, Gasoline, Natural Gas, Gold, Silver, Cocoa, Coffee, Cotton, Feeder 
Cattle, Wheat, Lean Hogs, Live Cattle, Soybeans, Sugar, and Wheat. 
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Table 12 below shows the performance, volatility and correlation of value models over the sample period from Jan 1972 to 
Dec 2012. During this 41 year period, Equity and Bond value factors exhibited the highest reward-to-risk ratios, followed 
by Currency and Commodity value factors. 

Table 12: Performance-Risk metrics for Cross-Asset Value Factors during 1972-2012 
 Value- 

Equities 
Value- 
Bond 

Value-
Currencies 

Value-
Commodities 

Average (%) 4.9 4.1 3.7 2.7 
CAGR (%) 4.4 4.0 3.3 1.5 
STDev (%) 10.5 7.4 8.8 15.1 
MaxDD (%) -44.6 -21.5 -26.9 -59.0 
MaxDDur (in yrs) 5.8 23.2 5.6 23.4 
Sharpe Ratio 0.46 0.56 0.42 0.18 
Sortino Ratio 0.72 1.13 0.67 0.25 
Calmar Ratio 0.27 0.71 0.30 0.12 
Pain Ratio 0.70 0.47 0.65 0.13 
Reward to 95VaR 0.09 0.15 0.09 0.03 
Reward to 95CVaR 0.06 0.10 0.06 0.02 
Hit Rate 0.56 0.54 0.55 0.53 
Gain to Pain 1.44 1.66 1.39 1.14 
Skewness -0.01 2.59 0.22 -0.26 
Kurtosis 2.37 21.12 2.97 1.09 
Correl with SPX -0.29 -0.09 0.01 0.06 
Correl with UST 0.03 -0.07 -0.09 -0.09 
CoSkew with SPX 0.06 0.02 -0.08 0.02 
CoSkew with UST -0.18 -0.05 -0.09 -0.09 
CoKurt with SPX -4.15 -3.20 -2.60 -3.35 
CoKurt with UST -3.10 -2.91 -4.02 -3.93 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

All value strategies displayed significant fat-tails (positive excess kurtosis), a property related to the “crash risk” for value 
strategies – they generally work poorly after the breach of a trading range and subsequent establishment of a trend. Similar 
to momentum strategies, Value strategies provided good diversification properties for strategies that are long traditional 
assets. Specifically, the correlation between value strategies and equity/bond betas were either negative or close to zero. 
The Co-kurtosis between Value strategies and equity and bond traditional factors were also negative. This suggests that 
value strategies may provide good tail risk diversifications to a traditional equity-bond portfolio.  

Figure 16 shows the trailing 18-month average correlation between equity and the four value strategy factors, between 
rates and value factors as well as the average correlation among the four value factors. Given the low or negative average 
correlation between value factors, investors would benefit from diversifying across value strategies in different asset 
classes. This is also evident from relatively smooth performance of an equal weighted value portfolio. 

Figure 16:  Rolling 18m correlation for Cross-Asset Value Factors  

 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 17: Performance of  Cross-Asset Value Factors 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  
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We also conducted statistical tests to examine the Value factor’s exposure to macro economic and market technical 
regimes. Table 13 below summarizes the annualized average performance and related t-statistics for our ‘Toy’ Value 
models, and Table 14 shows the Value factors’ exposures to macro/market regime factors by conducting regression tests 
over the full sample period. 

Table 13: Performance (t-stat*) of Value factor styles under different macro/market regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Value- 
Equities 

3.04 5.63 5.89 2.91 2.87 8.89 7.91 3.92 2.73 3.03 2.08 9.45 6.49 5.77 2.30 
(-0.78) (0.33) (0.45) (-0.84) (-0.87) (1.72) (1.32) (-0.40) (-0.91) (-0.78) (-1.20) (1.99) (0.70) (0.40) (-1.10) 

Value- 
Bond 

4.42 0.18 7.84 0.98 0.24 11.43 4.64 1.77 6.03 10.29 0.33 1.82 9.74 1.81 0.90 
(0.17) (-2.44) (2.27) (-1.94) (-2.44) (4.48) (0.30) (-1.46) (1.15) (3.81) (-2.34) (-1.42) (3.46) (-1.43) (-1.99) 

Value- 
Currencies 

7.88 -0.04 3.10 2.40 5.56 2.85 3.40 0.63 6.76 7.24 2.97 1.70 4.55 1.65 4.84 
(2.08) (-1.84) (-0.24) (-0.69) (0.96) (-0.30) (-0.12) (-1.42) (1.52) (1.47) (-0.33) (-1.03) (0.37) (-0.96) (0.60) 

Value-
Commodities 

1.83 6.15 0.04 3.75 3.76 0.44 -0.80 6.65 2.18 -1.15 1.24 7.94 0.63 2.88 4.52 
(-0.25) (1.04) (-0.79) (0.32) (0.33) (-0.66) (-1.04) (1.19) (-0.15) (-1.15) (-0.43) (1.58) (-0.61) (0.06) (0.55) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * The t-statistics shown in parenthesis is from a two-sample t-test from comparing factor performance under the particular regime 
versus factor performance out of the regime. 

Table 14: Value factors’ exposures (t-stats*) to macro/market regime factors 
 Growth Inflation Volatilities FundLiq MktLiq 
Value-Equities 0.25 0.09 -0.21 0.10 -0.20 
 (1.83) (0.67) (-1.54) (0.50) (-1.47) 
Value-Bond 0.09 0.34 -0.04 -0.27 -0.03 
 (0.95) (3.62) (-0.39) (-1.93) (-0.32) 
Value-Currencies -0.30 0.05 0.15 -0.06 -0.02 
 (-2.11) (0.39) (1.29) (-0.23) (-0.16) 
Value-Commodities -0.05 -0.10 0.05 0.21 0.04 
 (-0.26) (-0.53) (0.27) (0.72) (0.18) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. *The t-statistic shown in parenthesis is from regression of factor return versus respective regime factor. The results for Funding 
liquidity and market liquidity are after controlling for growth and inflation factors. 

While there were no common patterns for performance of our simple value factors across asset classes, we can make a few 
asset-specific observations.  High growth was constructive for equity and bond value strategies, while low growth 
generally benefited currency value strategies. The inflation level was positively correlated to the performance of bond 
value strategies, as during high inflation bond investors likely look for alternatives to going long duration. Equity value 
strategies worked well during high inflation episodes too. Higher volatility was negative for equity value strategies and 
good for currency value strategies. High market liquidity was generally negative for equity and bond value strategies. This 
makes economic sense as value strategies often underperform momentum strategies in high market liquidity environments.  
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Volatility  
 
Volatility is a key pricing variable for non-linear derivative products such as options. The notional size of the options 
market is close to $40T, and option volumes and open interest continue to grow (see traditional assets section, page 25). In 
times of macro-economic uncertainty, realized and asset implied volatility tend to rise. Given that the drivers of volatility 
are often common to different asset classes, volatility levels tend to be positively correlated. Figure 18 below shows levels 
of implied volatilities for several traditional asset classes - note the high correlation between volatilities over the past 5 
years.13  Unlike other traditional assets, volatility shows properties of persistence and mean reversion (rather than trending 
and mean reversion). Volatility tends to stay in a low regime for long periods of time, while transitions to a high regime 
are quick and difficult to predict. These properties of volatility are common across asset classes, which is one of the 
reasons why investors often consider Volatility to be a separate asset class.  

Figure 18: Implied Volatilities for the Main Asset Classes over the past 20 years 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Supply and demand imbalances for options and patterns of investor behavior often create friction in volatility markets. 
Investors tend to sell volatility in quiet times, and rush to buy protection in times of high uncertainty. This reinforces the 
cyclical nature of volatility. As within other asset classes, a volatility investor can capture relative value opportunities 
between different volatility products, systematically sell volatility to generate carry, or express volatility directional views. 
Volatility strategies are often directly tied to the microstructure of specific derivative product markets. Derivative products 
can be complex and quickly evolve. As a result, volatility strategies often require advanced models and are implemented 
over shorter time horizons.  

Due to volatility’s tendency to persist in a regime for extended period of time but quickly change regimes, the 
performance of volatility strategies is often more affected by tail events, rather than day to day volatility. The sensitivity of 
volatility strategies to tail risk allows investors to express relative value views on the probability of tail events. While 
many volatility strategies can be classified as carry, relative value or traditional beta, we have decided to classify volatility 
strategies as a separate ‘Volatility’ alternative risk factor.  

Even for a single underlying (e.g. 10 year treasury rate, S&P 500 index, etc.), volatility is not a single asset but a collection 
of different assets -  for example, the volatility for each option maturity and strike often has different properties (e.g. level, 
responsiveness to market shocks, etc.). The fair value for volatility based on the expectation for subsequent realized 

13 See Appendix for implied volatilities within each asset class (Equity Indices, Bonds, Interest Rate Swaps, Credit default swaps, 
Currencies and Commodities) since 1992. 
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volatility of the underlying asset. Given these common properties of volatility, there are a number of strategies that can be 
implemented across various asset classes.  

Implied – realized volatility arbitrage strategies involve systematically selling volatility that is deemed expensive. 
Implied volatilities for assets that are broadly held long tend to trade rich. The reason for this is often a supply/demand 
imbalance in which investors demand protection (for the asset held long), while there is a lack of a natural supply of 
protection. Perhaps the best examples are S&P 500 and 10-year Treasury options. Given the high liquidity and strong 
correlation to most investment portfolios, options on these products have traded persistently rich most of the time (see 
S&P 500 variance bonds (2005) for equities, and Volatility as an Asset Class (2005) for rates volatility).  

While implied-realized volatility strategies offer strong returns (especially during periods of low volatility, and in the 
aftermath of market crises) they tend to be vulnerable to volatility spikes in which they can suffer catastrophic losses. For 
this reason, implied-realized strategies need to include risk management tools to control leverage and limit tail risk. For 
instance, one can use the level of the implied-realized volatility spread and level of volatility in other markets as a trading 
signal to add or remove exposure. This was shown to produce good results in Equity, FX, and gold implied-realized 
volatility arbitrage strategies (Investment Strategies No.75: Risk Premia in Volatility Markets). The simplest implied-
realized volatility strategies include selling of unhedged options (often straddles). These models rely on asset prices being 
range-bound over certain time periods (e.g. see Investment Strategies No. 86: Range Bound model) 

Term structure roll-down is another popular volatility strategy in which an investor takes advantage of the term 
premium of implied volatility. The term structure premium often has the same origin as the implied-realized volatility 
premium. When implied volatility trades above realized, investors prefer to buy longer dated options to minimize the cost 
associated with the time decay of shorter-dated options. At the same time, the supply of long dated options can be scarce. 
This can cause the implied volatility term structure to be steeply upward sloping (e.g. in Equities the term structure is 
upward sloping ~85% of the time). Investors can sell the implied volatility term structure to generate positive returns.  

The risk of term structure roll-down strategies is the same as for implied-realized strategies – a sharp increase in volatility 
often causes term structure inversion. For this reason, term structure roll-down strategies should also be risk-managed to 
adjust leverage based on prevailing market conditions. One example of such a strategy is the J.P. Morgan Macro-hedge 
that removes roll-down exposure in short term S&P 500 volatility (VIX) as soon as the term structure flattens/begins to 
invert. Historically, sharp term structure inversion happened only after several days of flattening/mild inversion.  

 Relative value volatility strategies buy volatility that is deemed cheap and sell volatility deemed rich. Also called 
‘spread trading’, these strategies can be applied to the volatility of a single asset, on a portfolio level across similar assets, 
or between entirely different asset classes. For example, an investor can sell 6M swaption straddles on 10Y rates and buy 
6M swaption straddles on 30Y rates. Due to the structural cheapness of short dated options on 30-year rates, and excessive 
demand for protection on 10-year rates this systematic strategy had strong historical performance (see Volatility as an 
Asset Class). Further interest rate volatility spreads and relative value metrics can be found in the Fixed Income Analytic 
Pack that is regularly published by J.P. Morgan research.   Additionally, the FX Derivatives Analytics Chartpack 
warehouses attractive relative value volatility trades in FX. 

In equities, relative value volatility trades are very common and often take advantage of structural supply/demand 
imbalances, or volatility valuation models. An example of a structural relative value trade is selling S&P 500 volatility 
that is expensive due to insurance industry demand, and buying Nikkei volatility that is cheap due to the volatility supply 
from retail structured products in Japan. Volatility for individual companies can be valued based on multi factor models 
that often use fundamental, technical and statistical measures, for example the J.P. Morgan relative value volatility models 
for European and Asian stocks (Investment Strategies No. 82: Relative Value Model for Implied Volatility).  

Relative value volatility strategies can also be implemented on credit volatility such as the strategy of selling iTraxx Main 
volatility and buying Crossover volatility (Investment Strategies No. 63: CDS Option Strategies), relative value trading 
between credit and equity volatility (Investment Strategies No. 52: Macro Credit-Equity Trading), and other volatility 
pairs across asset classes. 
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Tail Risk Trades take advantage of potential mispricing of tail risk in various derivative instruments. For instance, 
analysis of skew in FX markets shows that currency pairs in some cases may under-price market tail risk (Investment 
Strategies No. 62: Tail-risk hedging with FX options). Investors looking to design a systematic tail hedging strategy may 
look at currency markets for outright or relative value skew opportunities. In most other volatility markets, tail risk tends 
to be expensive due to excessive demand for protection. This often manifests itself as a steep implied volatility skew. 
Strategies that take advantage of expensive skew in equities include relative value trading of volatility and variance swaps, 
and low strike vs. high strike options (e.g. see our report on Nikkei convexity trade, and report on outperformance of put-
writing over call writing). Additionally, the richness of equity implied volatility skew was recently analyzed in academic 
research by Neuberger et.al (2013)14.  

Correlation Trading strategies involve trading correlation between a group of assets. Correlation trades are often 
implemented as a relative value trade between the volatility of an index and volatilities of its constituents (in this regards, 
dispersion trading is a special case of a relative value volatility strategy). Correlation trades are popular in the equities 
space when investors typically sell expensive index volatility and buy volatility on its underlying components, taking 
advantage of the structural supply/demand imbalance for index protection (Investment Strategies No. 98: Trading Equity 
Correlations).  

Correlation trades can also be implemented in other asset classes. Examples include trading spread options in rates (see 
yield curve spread option report in Fixed Income Analytic Pack), trading of hybrid options such as FX-equity contingent 
options, trading of commodity index options vs. options on individual commodities, etc. FX also allows one to imply the 
market-traded value of correlation between two currency pairs from option prices, thanks to liquidity in ‘cross’ options 
(e.g. correlation between EUR/USD and JPY/USD from EUR/USD, USD/JPY and EUR/JPY volatilities, all of which 
trade liquidly). The availability of implied correlation matrices leads FX investors to routinely use multi-currency/basket 
options for expressing levered directional views, as well as trade relative value via correlation swaps or baskets of 
long/short volatility (straddles and/or volatility swaps).  See our FX correlation monitor for an analytic tool to monitor 
correlation opportunities in FX, and Launching the revamped FX Correlation Analyser for details on the monitor. 

Volatility and Derivatives data can also be used as a trading signal for assets such as stocks, bonds, and commodities. 
A well known example is the fact that stocks with low realized volatility have outperformed stocks with high volatility, in 
contrast to standard market theories. An increasing number of investors describe this effect as the low volatility anomaly, a 
phenomenon that has persisted for multiple decades across markets globally and has been gaining a lot of interest in the 
investment community recently (e.g. see our paper on Minimum Variance Strategies). The level of realized volatility can 
also be used as a signal for allocation between risky and risk-less assets. In one of our previous reports (Investment 
Strategies No 51: Volatility signals for asset allocation) we documented the benefits of using volatility as a leverage signal 
for equity, bond and commodity portfolios over the past 20 years (use of volatility to allocate factor risk will be further 
examined in the next Chapter of this report).  

Options data such as put/call ratio and implied volatility skew can also be used to forecast stock returns. Examples of this 
were given in our report Investment Strategies No. 88: Signals from options market. Derivatives trading and hedging 
activity can also impact the price of underlying assets. For instance, in our report on the Investment Strategies No. 79: 
Market Impact of Derivatives Hedging – Daily Patterns, we showed that gamma hedging of options can cause intraday 
price momentum at the end of the day. Temporary market impact of derivative hedging often dissipates the next day, 
causing patterns of close-to-close mean reversion. In addition to intraday momentum, option hedging can cause patterns of 
weekly momentum (see Investment Strategies No. 104: Market Impact of Derivatives Hedging – Weekly Patterns) during 
option expiry cycles, followed by month-end mean reversion.  

To illustrate some properties of volatility risk factors, we created simple ‘toy models’ of volatility in each traditional asset 
class. All of our models are based on the most common volatility strategy: implied-realized volatility arbitrage. Inherently 
these strategies tend to be short volatility, correlation and tail risk. Similar properties may be shared also by some term 
structure roll-down, correlation, and tail risk volatility strategies. However, not all volatility risk factors behave in such a 
fashion. For instance, many volatility relative value strategies are designed as pure arbitrage strategies with no residual 
volatility exposure. There are many tail risk, term structure roll, and volatility signal strategies that are designed to provide 

14 Neuberger, A., Roman Kozhan and Paul Schneider (2013), "The Skew Risk Premium in the Equity Index Market", Review of 
Financial Studies 26(9), 2174-2203. 

45 

                                                 

https://jpmm.com/research/content/GPS-527794-0
https://jpmm.com/research/content/GPS-527794-0
https://jpmm.com/research/content/GPS-744432-0
https://jpmm.com/research/content/GPS-459264-0
https://jpmm.com/research/content/GPS-459264-0
https://jpmm.com/research/content/GPS-1277826-0
https://jpmm.com/research/content/GPS-1277826-0
https://jpmm.com/research/content/GPS-1262529-0
https://markets.jpmorgan.com/%23fxcorrelation
https://markets.jpmorgan.com/getFXCorrServices/FXCorrUserGuide.pdf
https://jpmm.com/research/content/GPS-1145056-0
https://jpmm.com/research/content/MMRC-477851-1
https://jpmm.com/research/content/MMRC-477851-1
https://jpmm.com/research/content/GPS-1277803-0
https://jpmm.com/research/content/GPS-1277781-0
https://jpmm.com/research/content/GPS-1277781-0
https://jpmm.com/research/content/GPS-1277846-0


 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

protection in volatile markets, and may behave differently than our implied-realized volatility toy models. For this reason 
investors should avoid generalizing the results below to all volatility strategies. 

Our simplified models for volatility premium strategies are:  

Volatility – Equities: Equal weighted combination of S&P 500 Buy-write (BXM) and Put-write (PUT) Index; 

Volatility - Rates and Credit: Excess return of a short position on 3-month at-the-money straddles (ATM Call plus ATM 
Put) on near-month US 10-year Treasury Futures, rolled monthly. 

Volatility – Currencies: Excess return of an equal weighted position of volatility swaps on USDJPY, USDAUD and 
USDCHF (receiving implied volatility swap) with unit vega notional, rolled monthly. 

Volatility – Commodities: Excess return of a short position on 3-month at-the-money straddles (ATM Call plus ATM 
Put) on Gold, rolled monthly. 

Table 15 below shows the risk-reward statistics during the sample period Jan 1986 to Dec 201215. During this backtest 
period, the cross asset volatility factors realized positive Sharpe ratios. Steep draw-downs were caused by volatility spikes. 

Table 15: Performance-Risk metrics for Cross-Asset Volatility Factors during 1986-2012 
 Volatility- 

Equities 
Volatility - 

Bonds 
Volatility -

Currencies 
Volatility -

Commodities 
Average (%) 3.0 1.9 6.1 7.2 
CAGR (%) 2.8 1.8 5.8 7.1 
STDev (%) 5.5 3.7 9.6 8.6 
MaxDD (%) -14.4 -11.2 -54.1 -27.4 
MaxDDur (in yrs) 2.8 5.3 5.4 1.8 
Sharpe Ratio 0.5 0.5 0.6 0.8 
Sortino Ratio 0.7 0.7 0.8 1.2 
Calmar Ratio 0.5 0.3 0.4 0.6 
Pain Ratio 1.7 0.8 0.6 1.7 
Reward to 95VaR 0.1 0.1 0.1 0.1 
Reward to 95CVaR 0.1 0.1 0.1 0.1 
Hit Rate 62% 57% 67% 69% 
Gain to Pain 1.6 1.4 1.7 1.9 
Skewness -1.5 -0.6 -2.6 -0.9 
Kurtosis 6.3 0.5 12.7 1.6 
Correl with SPX 27% 12% 18% 17% 
Correl with UST -12% -35% -34% 3% 
CoSkew with SPX -0.7 -0.1 -0.6 -0.1 
CoSkew with UST 0.2 -0.8 -0.9 0.4 
CoKurt with SPX -0.4 -2.7 -1.0 -2.1 
CoKurt with UST -2.2 -7.3 -8.8 -1.1 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

These simple volatility strategies had significant negative skewness and fat-tails (positive excess kurtosis). In other words, 
(short) volatility strategies worked poorly during market distress and/or liquidity crunches. The strategies also exhibited 
significant positive correlation with Equity beta – our volatility models were susceptible to broad equity market risks 
given their short volatility exposure. 

Figure 19 shows the trailing 18-month average correlation between equities and the Volatility factors, between Rates and 
Volatility factors as well as the average correlation among the Volatility factors. Note that our simple volatility strategies 
showed increased correlation to risky assets (equities, rates) and between themselves, especially over the past 5 years. 

15 The backtests for Volatility strategies on Rates and Credit, Currencies and Commodities started at Jan 1990 due to limited data 
availability. 
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Historical performance was strong, and after the large drawdown during 2008/2009, volatility strategies in most cases 
recovered to reach new highs. 

 
As for other risk factors, we conducted statistical tests to examine the factor’s exposure to macro economic/market 
regimes.  Table 16 below summarizes the annualized average performance and related t-statistics for the ‘Toy’ models 
under different regimes and Table 17 gives exposures to macro/market regimes over the full sample period16. 

Table 16: Performance (t-stat*) of Volatility factor styles under different macro/market regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Volatility- 
Equities 

1.56 3.75 2.78 2.73 2.73 1.73 2.08 2.22 3.46 1.30 3.61 2.44 2.35 1.84 3.53 
(-0.78) (0.72) (0.07) (0.06) (0.05) (-0.23) (-0.36) (-0.27) (0.60) (-0.56) (0.64) (-0.20) (-0.19) (-0.52) (0.66) 

Volatility - 
Bond 

0.80 1.83 3.93 1.38 2.53 - 1.54 3.85 0.79 -5.22 4.22 1.45 0.77 1.01 3.37 
(-1.16) (-0.03) (1.42) (-0.75) (0.69) - (-0.29) (1.55) (-1.12) (-2.71) (2.19) (-0.62) (-0.94) (-0.71) (1.56) 

Volatility - 
Currencies 

-0.79 13.80 7.76 4.52 9.36 - 11.61 11.71 -1.52 -47.22 9.86 11.00 -1.83 11.56 9.05 
(-2.85) (2.58) (0.44) (-1.08) (1.08) - (1.90) (1.47) (-3.14) (-8.26) (1.21) (2.87) (-2.71) (1.63) (1.09) 

Volatility -
Commodities 

10.17 5.27 4.87 5.96 8.77 - 7.20 7.36 7.19 0.01 10.50 6.30 5.17 6.49 9.42 
(1.38) (-0.81) (-0.70) (-0.86) (0.69) - (-0.02) (0.04) (-0.02) (-1.18) (1.31) (-0.60) (-0.77) (-0.27) (0.97) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * The t-statistics shown in parenthesis is from a two-sample t-test from comparing factor performance under the particular regime 
versus factor performance out of the regime. 

Table 17: Volatility factors’ exposures (t-stats*) to macro/market regime factors 
 Growth Inflation Volatilities FundLiq MktLiq 
Volatility –Equities 0.05 -0.06 -0.29 0.53 0.04 
 (0.48) (-0.39) (-3.89) (2.46) (0.50) 
Volatility –Bond 0.07 -0.01 -0.15 0.13 0.12 
 (0.92) (-0.09) (-2.58) (0.76) (1.98) 
Volatility –Currencies 0.76 0.13 -1.30 3.41 0.46 
 (4.24) (0.28) (-10.06) (9.20) (3.00) 
Volatility –Commodities -0.46 -0.28 0.08 0.96 0.06 
 (-2.76) (-0.84) (0.60) (2.50) (0.43) 

Source: J.P. Morgan Quantitative and Derivatives Strategy. *The t-statistic shown in parenthesis is from regression of factor return versus respective regime factor. The results for Funding 
liquidity and market liquidity are after controlling for growth and inflation factors. 

16 Due to non-normality of the independent variable(s) in the regressions, it is possible that the regression slope (in Table 17) implies 
different conclusions from the analysis in 1/3-2/3 percentile regime averages (Table 16). For example, we find the regression slope of the 
Equity Volatility factor on Volatility regime indicator is significantly negative, implying that higher Volatility leads to lower returns of 
the Equity Volatility factor. However, the regime study didn’t find a significant relationship between the Volatility level and the Equity 
Volatility factor. This is because the some outliners made the regression coefficient significant – removing them actually makes the 
regression slope slightly positive (not significant). As a result, we should look for cases where regression and regime analysis make 
similar conclusions while acknowledge a possible conflict of results due to modeling error (non-normally) as well as insufficient sample 
size (statistical hypothesis testing is usually based on large sample assumptions). 

Figure 19:  Rolling 18m correlation for Cross-Asset Volatility Factors  

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy .  

Figure 20: Performance of  Cross-Asset Volatility Factors 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy .  
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Higher economic growth was generally positive for volatility strategies (Bond, Currencies and Equities), while it was 
negative for the Gold Volatility strategy. The reason for this is the cyclical decline of realized and implied volatility of 
risky assets during high growth regimes. Almost all volatility strategies had negative correlation to levels of volatility. 
High volatility negatively impacted strategies, as they were short volatility by construction. Initial under- performance of 
Equity and Commodity volatility strategies during high market volatility regimes was cushioned by the subsequent pickup 
in the implied-realized volatility premium. This offset the initial losses due to the volatility increase. In our test, volatility 
strategies were not very sensitive to inflation regimes. This partly reflects the fact that the back-testing period for most 
volatility strategies starts from the late 1980s/early 1990s when inflation became low and stable. 
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Factor Correlations  
Over the past several years the correlation between traditional asset classes rose to historical highs and often showed 
significant instability. High market volatility and unstable correlations damaged many multi asset portfolios. In our 
previous reports, we documented structural changes in the correlations of traditional assets resulting from market volatility, 
central bank activities and various asset specific developments (see: Investment Strategies No. 99: Cross-Asset 
Correlations).  

As we discussed in the introduction, two main benefits of risk factor investment approach are providing access to new 
sources of premia, and reducing portfolio correlation levels. In addition to analyzing asset correlation levels, investors 
should pay special attention to correlation during periods of high market volatility. It is during volatile markets that hidden 
correlations between assets may appear and give rise to portfolio downside tail risk. Additionally, breakdowns in 
correlation (such as the recent decline in equity-rate correlation) can throw off risk allocation models (e.g. recent 
underperformance of Risk Parity portfolios). The correlation structure of risk factors should be the key input for factor 
selection, and the construction and risk management of multi-factor portfolios. 

The ability of a factor to generate risk premium can be analyzed for each factor separately and performance can then be 
compared across various factors (e.g. for a performance comparison of our 20 factor ‘toy models’, see Appendix). To 
understand the diversification value of a factor, one needs to analyze the factor’s relationship to other factors in a portfolio. 
The correlation of a factor to other assets may also change under different market regimes such as volatility, growth, 
inflation, etc.  

In an idealized world, risk factors are designed to be independent of each other. In the real world, factors will have non-
zero correlations and in some cases may have significant overlap with other traditional or alternative factors. We will first 
study correlation properties of our main factors styles: Traditional, Momentum, Value, Carry, Volatility in each of the main 
asset classes (Equity, Bond, Currency, and Commodity). We will try to identify correlation patterns between these factors 
both in times of market stress and in normal market conditions. At the end of the section, we will outline steps to construct 
fully independent factors.  

Table 18 shows a correlation matrix for the 20 risk factors analyzed earlier in this section (our risk factor ‘toy’ models). 
Below the diagonal we show correlations calculated for the full sample period (Jan 1972-Dec 2012) and above the diagonal 
correlation statistics during crisis periods. 17  We also show the average correlation of each factor with all other factors 
during the full sample period, five episodes of major crises, as well as the latest global financial crisis (Aug 2007-Mar 
2009).  We note a relatively high level of correlation among the traditional asset classes (with the exception of government 
bonds), as well as increased correlation between traditional and alternative risk factors during the global financial crisis. 
However, correlation properties were quite different for different alternative risk factors. For example, carry strategies 
(especially currency carry), was positively correlated to traditional assets and volatility strategies during periods of market 
stress. Similarly, volatility strategies were correlated between themselves, and correlated to traditional and carry strategies 
during the crises. This should come as no surprise if we recall the large carry trade unwind that occurred simultaneously 
with the equity sell-off and volatility spike during the 2008/2009 crisis.  

On the other hand, Value strategies were negatively correlated to most traditional and alternative risk factors. Specifically, 
during the times of market stress, Value strategies showed consistently negative correlation to Traditional assets, Carry and 
Momentum strategies. Momentum strategies were also on average negatively correlated to other risk factors during the 
crises. As we discussed in the description of individual factor styles, we see that Momentum and Value strategies tend to 
behave in opposite ways, and so do Momentum and Volatility. This is not surprising as many Value strategies are based on 
mean reversion (opposite of Momentum), and our selection of volatility models (selling unhedged options) performs better 
in range bound markets. The negative correlation between various blocks of our risk factor correlation matrix can give us a 
lot of optimism about the risk factor approach - even with very simple factor style models, we can create a well diversified 
portfolio. 

17 Crisis periods we include for the correlation calculation are Oct 1973—Mar 1974 (OPEC Oil Crisis), Aug 1982 – Oct 1983 (Latin 
America debt crisis), July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and 
LTCM), and Aug 2007 - Mar 2009 (Global Financial Crisis or GFC). 
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Table 18: Sample correlation between Cross Asset Factor Styles during Jan 1972 to Dec 2012 

Color Scheme Less than -30% -30% to -10% -10% to +10% +10% to +30% Greater than +30% 

                     

  Trad’l-
Equity 

Trad’l -
Bond 

Trad’l- 
Curncy 

Trad’l -
Comdty 

Carry-
Equity 

Carry-
Bond 

Carry-
Curncy 

Carry- 
Comdty 

MoM- 
Equity 

MoM -
Bond 

MoM -
Curncy 

MoM - 
Comdty 

Value- 
Equity 

Value-
Bond 

Value-
Curncy 

Value- 
Comdty 

Vol- 
Equity 

Vol - 
Bond 

Vol -
Curncy 

Vol - 
Comdty 

Trad’l-Equity   33 18 18 -5 16 54 9 14 26 -18 -22 -8 -14 -23 7 52 7 31 33 
Trad’l -Bond 13   28 -24 -5 -6 -4 -5 7 48 12 -1 -7 -15 0 -1 14 -56 -48 29 
Trad’l- Curncy 12 17   19 6 11 39 -10 -7 -6 8 6 1 -16 -20 -15 35 -31 2 22 
Trad’l -Comdty 10 -18 20   3 10 41 26 1 -11 -22 35 18 -8 -33 -24 31 4 48 -17 
Carry-Equity -14 1 11 2   9 10 -4 -7 -3 3 1 8 10 -10 -10 9 -3 -1 -21 
Carry-Bond -6 -15 -7 0 3   28 -3 -6 -20 -2 -7 -5 13 -10 -2 10 12 12 19 
Carry-Curncy 22 -14 8 23 0 11   13 20 -1 -12 1 14 -4 -56 0 38 28 33 28 
Carry- Comdty -3 -5 2 16 -2 -1 2   13 -13 -7 18 14 -11 -14 -50 30 -11 17 -18 
MoM- Equity -12 3 1 8 4 -2 5 12   24 3 9 -6 -33 -10 14 5 23 12 -17 
MoM -Bond 8 12 -9 1 0 16 -1 -2 0   18 15 10 -26 -14 15 -14 -7 -51 8 
MoM -Curncy 0 1 5 -4 -7 9 -4 1 12 8   5 -7 -27 -30 -11 -35 -26 -48 -12 
MoM - Comdty -2 6 3 16 2 -1 2 27 9 7 5   -6 -15 -12 -46 -19 1 -19 -12 
Value- Equity -29 3 -3 2 1 6 2 -2 -7 3 0 0   4 -4 -9 5 32 23 6 
Value-Bond -9 -7 3 0 1 19 1 -10 -10 -23 -11 -5 7   0 5 -10 9 20 -30 
Value-Curncy 1 -9 -20 -9 -8 5 -2 2 -5 9 -32 -10 -7 2   11 -19 21 -13 -6 
Value- Comdty 6 -9 -7 -23 1 4 5 -34 -8 2 -6 -58 -5 2 8   -16 37 15 20 
Vol- Equity 28 -10 4 23 -4 5 21 9 -5 4 -8 -7 5 -2 8 -7   -14 55 14 
Vol -Bond 12 -35 -13 6 -5 -9 8 8 1 -1 -6 3 12 4 7 4 5   30 17 
Vol -Curncy 18 -34 3 30 -12 12 29 4 -2 -16 -4 0 15 10 -14 -2 23 25   -2 
Vol - Comdty 17 3 7 -1 -7 10 25 -11 -12 1 -11 -9 8 -8 -6 8 12 3 9   
                                          
Full Sample Ave 4 -5 2 5 -2 3 7 1 0 1 -3 -1 1 -2 -4 -6 6 1 5 2 
Crisis Average 12 0 5 6 -1 4 14 0 3 0 -11 -3 4 -8 -13 -3 9 4 6 3 
Ave During GFC 19 -6 15 16 5 12 22 6 2 -7 -14 -2 6 -12 -19 -8 13 5 4 5 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Lower triangular statistics are the all-sample pair-wise correlation and upper triangular are the correlation statistics during crisis periods. ** Crisis periods we include for the correlation calculation are Oct 
1973—Mar 1974 (OPEC Oil Crisis), Aug 1982 – Oct 1983 (Latin America debt crisis), July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and LTCM), and Aug 2007 - Mar 2009 (Global Financial Crisis or 
GFC). 
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Figure 21 and Figure 22 show rolling 18-month average correlations between the Carry, Momentum, Value and Volatility 
strategy factor styles.  

 

We note the consistently negative correlation between Momentum and Value factors (-30% to 0% range), average positive 
correlation between Carry and Volatility (especially during the latest crisis), and positive correlation of Carry and 
Momentum. The average correlation between Carry and Value, Momentum and Volatility, and Value and Volatility was 
mean reverting in a ~ -20% to +20% range. In Appendix, we further analyze factor correlation levels in different market 
regimes of growth, inflation, volatility, funding and market liquidity. We have ranked all of the factors considered 
according to their historical performance, correlation and portfolio diversification ability. 

Figure 23 shows the rolling 18-month average correlation between each factor style group with all other factors, and Figure 
24 shows the average correlation of all factors. 

Figure 23: Rolling 18m average correlation among Cross-Asset Factors with other Factor Groups 
    (%) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

We note the average factor correlation was close to zero during the past four decades. This is an important result as it shows 
that even though we didn't require independent factors (orthogonality), the correlation among the main factor styles and 
assets cancelled out. Thus the orthogonality of risk factors was achieved cross-sectionally, rather than being imposed in 
factor construction. The zero average correlation also held up well during crisis periods. 
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Figure 21:  Rolling 18m average correlation between Cross-Asset 
Carry, Momentum and Value Factors 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 22:  Rolling 18m average correlation between Volatility and 
Cross-Asset Carry, Momentum and Value Factors 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  
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Figure 24: Rolling 18m average correlation among Cross-Asset Traditional, Carry, Momentum, Value and Volatility Factors 
      (%) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
While an understanding of correlations is the key to risk factor investing, we think it is not critical for an investor to ask for 
an ideal set of orthogonal risk factors. As we have shown, the net zero correlation effect can be achieved in a well 
diversified portfolio of risk factors. However, it is possible to construct an orthogonal set of new factors, and some 
investors may prefer to do so. Below we will outline two methods often used to design uncorrelated factors. More formal 
derivation of these methods is provided in the Appendix on Independent Risk Factors. 

A common approach to designing independent factors is Principal Component Analysis (PCA). PCA takes our original 
risk factor time series (e.g. our 20 ‘Toy’ models) and re-weights them to create new uncorrelated (orthogonal) factors. This 
is accomplished by diagonalization of a historical covariance matrix. The first principal component is the one that explains 
the largest portion of data variance (it is the ‘vector’ corresponding to the highest ‘eigenvalue’ of the diagonalized 
covariance matrix). The second principal component by design has zero correlation to the first principal component and 
explains (the second) largest portion of data variability, and so on. For more details on PCA please see Appendix. 

Table 19 and Table 20 below shows the risk contribution profile18 of the principal components (denoted by PCx) from the 
20 Cross-Asset ‘Toy’ Model risk factors in Traditional, Carry, Momentum, Value and Volatility styles. We could easily 
identify the major risk contributors to each principal components: Commodity beta for PC1, Equity beta for PC4, Equity 
Carry for PC5, Commodity Carry for PC6, Equity Volatility for PC19 and Bond Volatility for PC20, just to name a few. 
Sharpe ratios of the principal components are generally smaller than the original cross asset risk factors. 

While PCA is a common simple way to create uncorrelated factors, it does have some drawbacks. The main one is that it 
generally ranks more volatile factors (such as Equity and Commodity related factors) as more important principal 
components. This can lead to investors using only the top principal components while ignoring the less volatile but 
potentially important risk premia19. Investors should also be aware that while the correlation between PCA factors is zero 
by construction, PCA does not always obtain independent factors. This is the case for non-normal data sets (i.e. despite 
zero correlation, principal components are fully independent only if the data are jointly normally distributed).  

18 See the Chapter on Construction and Risk Management of Factor Portfolios for more details on the calculation of risk contribution 
profile for a portfolio of risk factors.  
19 One could perform PCA on standardized risk factors (on correlation matrix instead of covariance matrix) to reduce the impact of 
marginal volatility. However, this could create another bias, namely, the first principal component would overweight the factor with the 
worst diversification abilities (highest average correlation with others). See Appendix for more on factor diversification abilities. 
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Table 19: Risk Contribution Profile (%) for Principal Components of Cross Asset Risk Factors (Jan 1972 – Dec 2012) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Each cell (by column) represents the total risk contribution (in percentage) of Cross asset risk factor to each principal component. 

Another method, called Independent Component Analysis (ICA), can produce truly independent factors for both normal 
and non-normal asset returns. This is achieved by optimizing a particular non-normality measure of the factor joint 
distribution. The idea of ICA arises from ‘Blind Source Separation (BSS)’ in signal processing applications. The details go 
beyond the scope of this report, but can be found in technical Appendix on independent risk factors for interested readers.  

Table 20 below shows the risk contribution profile of cross asset Traditional, Carry, Momentum, Value and Volatility 
factors to the ICA independent risk factors. Similar to the case in PCA, we can easily identify the major risk contributors to 
each independent risk factor: Bond Carry and Bond Value for RF3, Equity Carry for RF7, Currency Carry and Momentum 
for RF11, Equity Value for RF15, etc. 

Table 20: Risk Contribution Profile (%) of Independent Risk Factors from the original Cross Asset Risk Factors (Jan 1972 – Dec 2012) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Each cell (by column) represents the total risk contribution (in percentage) of Cross asset risk factor to each independent risk factors. 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20
Traditional-Equities 0 21 0 57 6 0 2 0 1 0 4 3 0 1 0 1 1 0 1 0
Traditional-Bond 0 0 0 1 1 1 1 5 3 12 0 1 1 6 0 11 48 1 1 6
Traditional-Currencies 1 0 0 0 3 1 0 14 0 3 35 1 15 20 4 0 2 0 0 0
Traditional-Commodities 53 22 7 9 0 0 5 0 0 1 1 0 0 1 0 0 0 0 0 0
Carry-Equities 0 1 0 9 79 2 4 0 0 1 2 0 0 0 0 0 1 0 0 0
Carry-Bond 0 0 0 0 0 0 2 1 1 2 2 12 35 5 11 4 1 21 0 2
Carry-Currencies 0 1 0 0 0 0 8 3 0 0 1 8 1 7 50 18 0 0 1 0
Carry-Commodities 6 2 2 1 2 70 6 2 4 3 0 0 0 1 0 0 0 0 0 0
Momentum-Equities 6 30 51 10 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Momentum-Bond 0 0 0 0 0 0 0 0 0 5 12 3 2 1 8 17 1 48 1 1
Momentum-Currencies 0 1 0 1 0 3 0 23 18 3 16 4 4 5 4 12 7 1 0 0
Momentum-Commodities 15 8 20 3 1 9 0 18 17 5 1 1 0 0 0 1 0 0 1 0
Value-Equities 0 0 0 8 4 4 31 1 5 19 10 12 1 0 0 1 2 1 0 1
Value-Bond 0 0 0 1 0 0 0 1 0 7 5 4 24 25 8 3 0 21 0 0
Value-Currencies 0 0 0 0 1 6 4 21 12 1 2 0 12 20 0 10 11 0 0 0
Value-Commodities 18 7 18 1 0 0 0 6 32 13 1 2 0 0 0 0 1 0 1 0
Volatility-Equities 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 92 1
Volatility-Bond 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 3 3 2 88
Volatility-Currencies 1 3 0 0 2 1 25 2 1 18 1 3 2 3 12 2 20 2 0 0
Volatility-Commodities 0 1 0 0 0 2 8 0 3 8 7 43 3 4 1 16 2 2 0 0

RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 RF11 RF12 RF13 RF14 RF15 RF16 RF17 RF18 RF19 RF20
Traditional-Equities 1 36 0 5 6 26 0 1 2 5 3 0 0 0 10 0 -1 5 2 -1
Traditional-Bond 2 5 0 50 0 0 0 0 8 0 0 0 12 0 2 14 2 5 0 0
Traditional-Currencies 1 8 0 1 0 7 1 2 33 1 0 2 1 6 3 4 17 3 0 9
Traditional-Commodities 12 3 1 0 18 0 1 49 1 3 1 0 0 1 3 2 -1 0 1 5
Carry-Equities 1 0 0 0 0 2 92 0 0 1 0 0 0 0 1 0 0 0 0 1
Carry-Bond 0 0 43 2 0 4 0 1 0 0 0 0 42 0 0 0 0 7 0 0
Carry-Currencies 5 0 1 0 0 0 0 0 4 6 42 36 1 2 0 1 1 0 0 0
Carry-Commodities 2 0 0 1 3 0 0 7 6 2 2 0 1 1 5 1 4 0 28 36
Momentum-Equities 0 2 0 7 0 0 0 0 19 0 1 2 0 0 1 0 67 0 0 0
Momentum-Bond 3 0 2 7 0 8 0 0 0 0 0 0 5 0 0 1 0 73 0 1
Momentum-Currencies 4 0 1 1 0 9 0 0 0 11 36 22 0 0 0 1 8 3 0 3
Momentum-Commodities 2 1 0 3 37 1 0 15 1 0 2 1 0 21 1 0 0 0 21 -5
Value-Equities 0 10 0 0 0 0 1 10 0 1 0 0 0 2 68 0 1 0 0 7
Value-Bond 1 0 53 5 0 1 0 0 1 0 2 1 33 0 0 1 0 1 0 1
Value-Currencies 1 0 0 0 1 19 0 4 14 15 0 32 1 6 1 3 -1 1 0 2
Value-Commodities 0 13 0 0 14 0 0 -5 0 0 0 -1 1 -2 2 4 0 0 44 29
Volatility-Equities 0 17 0 8 11 23 0 3 0 17 3 0 0 4 1 11 0 1 0 2
Volatility-Bond 50 3 0 1 2 0 0 12 1 2 2 0 0 2 1 12 0 2 1 9
Volatility-Currencies -1 0 0 0 1 1 0 1 8 35 3 2 0 11 1 32 1 0 3 0
Volatility-Commodities 14 0 0 11 7 0 3 0 1 1 3 0 0 45 1 14 0 0 0 0
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Factor Selection and Factor on Factor 
 
The most likely first step in the factor selection process is to analyze the historical performance of factors. For instance, one 
can rank a universe of factors based on annualized returns or historical Sharpe ratios. Similarly, investors can rank factors 
based on their diversification ability, i.e. average correlation to other risk factors. The performance and diversification 
ranking of our ‘Toy model’ risk factors is presented in Appendix. Performance and diversification should be compared in 
different market regimes such as growth, inflation, volatility and liquidity. Investors can then select factors that have 
attractive properties in the prevailing market regime, or make factor selections based on the market regime forecasts.  

More broadly, the selection of risk factors to be included in a portfolio should involve not only assessing factor performance 
and correlation, but also tail risk properties, liquidity, and estimated capacity of the strategy. 

In the aftermath of the global financial crisis, many investors started giving more attention to tail risk properties in their 
factor selection process. Factor tail risk can emerge as a result of hidden correlations, low liquidity, crowded or low capacity 
strategies, etc. A simple approach would be to evaluate factors by ranking them according to ratio of maximum drawdown 
and annualized standard deviation. Figure 25 below shows these rankings for our 20 ‘Toy’ models during the market crises 
of ‘90-‘91, ’97-’98 and ’07-’09 (e.g. during the global financial crisis, Commodity beta and Currency Volatility realized the 
largest draw-downs of -68%, and -54%, or 3.3x, and 5.7x standard deviations, respectively). 

Figure 25: Maximum drawdown for the past three financial crises* measured by number of annualized standard deviations  
 
       (x) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and LTCM), and Aug 2007 
- Mar 2009 (Global Financial Crisis).  

 
To construct a multi-factor portfolio, investors can construct a combined rank for each of the factors by weighting measures 
such as performance (Sharpe ratio), diversification and tail risk ranks. For example, the chart below provides a stylized 
factor ranking assuming 50% weight on performance (Sharpe ratio), 25% weight on diversification (average correlation) and 
25% weight on tail risks (maximum drawdown divided by standard deviation). A simple multi-factor model could e.g. select 
the top 10 factors by combining these scores. We should note that the metric used to evaluate factors and assign weights will 
differ based on investors’ risk preference. For instance, unlevered investors will likely use absolute returns rather than 
Sharpe ratios, and risk-averse investors may put more weight on the tail risk ranking or include additional risk rankings such 
as duration of draw-down, or co-kurtosis. 
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Figure 26: Rank of Cross Asset Strategy factors* under Current Macro/Market regime** – The lower the number, the higher the rank 
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Performance ranked was performed on Sharpe ratio terms (the higher, the better),  Diversification rank was performed on average 
correlation terms (the lower, the better), Tail risk rank was performed on Maximum drawdown to standard deviations (the lower, the better), where Maximum drawdown were calculated during past 
three episodes of financial crises: July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and LTCM), and Aug 2007 - Mar 2009 (Global 
Financial Crisis or GFC). ** In our demonstration, we use low-mid Growth, low Inflation, low Volatility, High Funding Liquidity and Mid-High Market Liquidity as the current regime. 

 
From Figure 26, one can notice that the traditional bond factor scored the highest ranking by performance, tail risk and 
combined ranking methodology. This simple ranking approach may imply that the factor should be included in any multi-
factor model. However, we know that high ranking was likely due to the secular decline of government bond yields over the 
past few decades, high risk aversion during the global financial crisis, as well as bond buying programs by central banks.  

The question for an investor is ‘will the historical performance and risk properties of this factor persist, or mean revert’, for 
example as a result of improved risk sentiment, scaling back of central bank interventions, and other market developments. 
In other words, do we expect the bond risk factor to exhibit ‘momentum’, or should we approach the high ranking from the 
‘value’ perspective, i.e. expect performance mean reversion. This brings us to the concept of ‘Factor on Factor’ in which 
we will apply factor methodologies of momentum, value and carry to rank and select factors themselves. 

In our previous work, we have already documented the advantage of Multifactor models (see Investment Strategies No. 82: 
Multifactor Models) and a Factor on Factor approach when applied to Equity risk factors (see Investment Strategies No. 100: 
Equity Factor Rotation Models). The same approach can be applied to traditional and alternative risk factors across asset 
classes as illustrated in Table 21 below.   

Table 21: Factor Operations on Traditional Assets and Alternative Factors 

 Traditional Carry Momentum Value Volatility 

Traditional Asset 
Assets 

Long-only in 
Traditional Assets 

Long (short) higher (lower) 
yielding assets 

Long (short) higher (lower) 
momentum assets 

Long (short) assets with 
lower (higher) valuation 

Selling options (or risk managing) 
on traditional assets 

Alternative 
Factor Assets 

Long-and-hold in 
Alternative Factors 

Long (short) higher (lower) 
Carry to Risk Factors 

Long (short) Factors with 
higher (lower) Momentum 

Long (short) Factors with 
lower (higher) Valuation 

Selling options (or risk managing) 
on Alternative Factors 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Let’s illustrate the Factor on Factor approach in more details by applying the Momentum Factor on Factors. Price 
momentum of a factor can be defined in the same manner as price momentum of any other underlying. For instance one can 
use the percentage change of the factor price over some trailing window, Relative Strength Index, or apply some other 
momentum methodology. Momentum of a factor can also be calculated as a weighted average of momentum scores of all 
assets comprising the factor:  
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Factor Momentum (Score) = �𝑤𝑖
𝑖

× Momentum Score𝑖 

where 𝑤𝑖-s are the portfolio weights in the construction of Alternative Factor, and Momentum Score𝑖 are the Momentum 
scores for the i-th component asset.  

A simple example of momentum factor on factor would be an application of Momentum methodology on Value Factors. 
One can allocate between MSCI DM Equity Value Index and EM Equity Value Index based on the 6-month price 
momentum score for these indices. This simple application of momentum on value historically improved the Sharpe ratios of 
the DM and EM Value indices and significantly reduced drawdown as illustrated in the Figure 27 below.  

Figure 27: Cumulative excess return of MSCI DM Value index, MSCI EM Value Index and a rotator based on 6-month price momentum 
 

  
Source: J.P. Morgan Quantitative and Derivatives Strategy. * The Momentum rotator on Equity Value indices compares the total return of MSCI DM value, MSCI EM value and J.P. Morgan US 
Treasury Bond Index (JPMTUS Index) and takes long position on the best performing index.  

Another example where the Momentum factor was effectively applied on factor selection is a Momentum allocation between 
Currency Carry strategies. The model of momentum allocation between G10 and EM Carry was elaborated in Investment 
Strategies No. 33: Rotating between G-10 and Emerging Market Carry.  

Various risk asset allocation models and risk management techniques also implicitly implement Momentum factor on 
factors. In the next section we will elaborate on risk management techniques in detail, while here we are discussing them in 
the context of factor on factor selection approach.  For instance, Constant Proportional Portfolio Insurance (CPPI) and 
Option hedging techniques allocate between risky assets and cash based on the momentum of risky assets. A CPPI managed 
portfolio of carry strategies will increase exposure to carry when performance is strong and reduce it when the carry strategy 
starts suffering, thus implementing momentum on Carry.  

Another popular asset allocation approach is ‘Risk Parity’. In a Risk Parity approach investors incrementally allocate funds 
to factors with low or declining volatility. In most cases these are the factors with strong recent performance, and thus Risk 
Party has elements of a Momentum factor on factor approach. Finally, even a simple mean-variance optimized portfolio of 
factors often uses 6-12 month trailing returns as estimates of expected future returns, thus building in a momentum 
assumption in the optimal factor selection process.  

Another common approach is to use the Value Factor on Factors. Similar to Carry and Momentum factors, one could 
define aggregate Value scores for factors by either tracking the percentage of components displaying Value or using 
weighted average Value scores of the assets comprising a factor: 
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Factor Value (Percentage) = Percentage of Factor Components Displaying Value 

Factor Value (Score) = �𝑤𝑖
𝑖

× Value Score𝑖 

An example of the Value approach to factor selection is Value on Volatility Factors in which an investor rotates between 
short Volatility factors for the US, Japan or Europe, based on the level of the implied-realized volatility spread (i.e. a 
measure of value) for each of the regional volatility factors (Investment Strategies No.75: Risk Premia in Volatility 
Markets). Similarly, one can allocate between FX, Bond, Commodity and Equity implied-realized volatility carry, based on 
the level of spreads in these markets. 

Many asset allocation schemes implicitly incorporate a Value factor on factor approach. For instance, a simple equal 
weighting approach to portfolio rebalancing is a Value factor on factor approach. Keeping the asset weights equal involves 
buying assets that recently underperformed, and selling assets that recently outperformed (which has a mean-reversion or 
Value bias towards asset expected performance). 

The Factor on Factor approach can be generalized to conduct a multi-dimensional ranking of factors. For example, 
Quantitative Equity managers frequently combine the rank of Price Momentum, Earnings Momentum and Valuation in their 
stock selection process. The concept of multi-dimensional ranking is straightforward to apply to risk factors across assets. 
An investor would combine Carry, Momentum, Value and Volatility ranks for every factor and select factors with highest 
weighted average ranking.  

Multi Factor Rank = �𝑤𝑖 × Individual Factor Rank𝑖
𝑖

 

Weights 𝒘𝒊 assigned to ranking according to factor i (momentum, value, carry, volatility) can be adjusted based on the 
investor’s preference for the factor bias of a final portfolio (e.g. the portfolio can be biased towards carry, or any other 
factor). 
 
As we argued, the true power of risk factors comes from their ability to access new sources of risk premia and lower average 
levels of correlations. The construction and ongoing management of a risk factor portfolio therefore involves researching 
both the individual factors, as well as their correlation properties under various market regimes. We have shown that simple 
multi-factor models as well as the factor on factor approach result in dynamic factor weights. Rebalancing factor weights 
according to these prescriptions can drastically change overall portfolio risk profile over time. 

A related approach to constructing a factor portfolio is to start by defining desired portfolio risk properties, and solving for 
the factor weights and rebalancing prescription. An example would be to target a portfolio of factors that has minimal 
volatility, maximal diversification level, or the highest Sharpe ratio under certain assumptions for factor returns and 
covariance. One can also rebalance the portfolio by prescribing a risk budget to individual factors. An example is a simple 
requirement that each factor contributes equally to the overall portfolio risk (also known as Risk Parity). All of these 
methods result in a prescription for factor relative weights, and we will refer to them as cross-sectional risk management 
(or risk management of factor weights).  

Once a portfolio with the desired factor weighting is constructed, an investor can adjust the allocation between the factor 
portfolio and risk free asset in order to target a particular level of volatility, protect the principal amount of investment, or 
implement a timing strategy based on e.g. macro economic or market technical signals. We will refer to these methods as 
time-series risk management (or risk management of total risk).  

Methods of portfolio construction and risk management are very broad and important subjects. For this reason, we will focus 
on them in the rest of this report.  
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Introduction 
 
Financial markets today are complex and much different from those of 5, 10 or 20 years ago. Major changes include 
globalization, shifts in regional economic balance, increase in actively managed assets, broad usage of derivative products 
and leverage, and changes in regulatory regimes. As the nature of market risks change, investors constantly need to adjust 
methods to manage portfolio risk.  

As early as the market crisis of ’87, investors realized limitations of Modern Portfolio Theory, and specifically the 
assumption of normally distributed returns. It took several more events such as the crisis of 97/98, burst of the tech bubble 
and the market selloff of 2002 for investors to fully grasp the links between leverage, volatility, and tail risk. These 
consecutive crises lead to the adoption of more rigorous risk management techniques, and increased the usage of option 
based portfolio protection. Realizing that it may be easier to forecast volatility and correlation than asset returns, investors 
shifted focus from return-driven asset allocation models such as Mean Variance Optimization to pure risk-driven models, 
such as global minimal variance, maximum diversification and equal risk contribution approaches. Furthermore, a generic 
risk budgeting framework was developed to allow investors to input specific views on risk, while the Black-Litterman 
framework enabled investors to consistently incorporate specific views on returns. 

The global financial crisis of 2008-2009 further challenged investors’ understanding of risk. Unprecedented market 
volatility and rapid changes in cross-asset correlations caused even sophisticated risk-driven models to fail (see Rise in 
Cross Asset Correlations). Following the crisis, investors further increased focus on tail risk hedging, and on the problem 
of forecasting correlation and volatility regimes; methods like Risk parity, constant volatility targeting, and low volatility 
indices approach gained popularity during this time period. Specifically, Risk parity portfolios outperformed fixed weight 
portfolios, as well as many endowment models that both had too much risk allocated to equity-like investments. 20 
However, it did not take too long before the Risk parity approach began to suffer, due to the breakdown of equity-rate 
correlation and bond underperformance in 2013.  

Methods of portfolio risk management also need to evolve as investors expand their investment universe to non-traditional 
and alternative asset classes. Specifically, the inclusion of Commodities, Private Equity, Hedge Funds, Volatility, and 
alternative risk factors (Value, Momentum, Carry, and Volatility) can drastically change the distribution of portfolio risk. 
Many of these assets do not follow normal distributions, and hence the risk methods based on Modern Portfolio Theory 
may be suboptimal. 

In parallel to empirical developments, academics extended the traditional portfolio theories of Markowitz (1952) in several 
aspects. The original Mean-Variance approach seeks the portfolio with the optimal tradeoff between return and variance. 
An extension of this concept includes optimization of higher order risks such as tail risk or specific systematic sources of 
risk such as economic recessions (e.g. Cochrane (1999), Alexander and Baptista (2002), Chung and Schill (2006)). A 
portfolio optimized to maximize return, minimize variance, but also minimize systematic risk sources, is often quite 
different from a simple ‘mean-variance’ portfolio (thus different from Markowitz’s market portfolio). Other extensions of 
the Mean-Variance approach are the inclusion of specific views on expected returns as in the Black-Litterman approach, 
and the inclusion of specific views on risk as in Risk Budgeting approach.  

As the nature of market risks evolves and new assets emerge, investors should be familiar with all available risk methods. 
Each of the methods will have their own benefits and drawbacks, and may work best under different market conditions. 
The optimal approach to mange risk will therefore depend not only on the forecast returns and covariances, but also on the 
understanding of the prevailing market regime and potential tail risks. Investors who are versatile in all risk management 
methods can stand ready to apply a specific method when it is likely to yield the best results.  

In the rest of the report we will discuss methods to construct and risk-manage factor portfolios. We will start with 
introducing the concept of a mean-variance portfolio. Mean variance optimization (MVO) can be viewed as an 
approximation for a more generic portfolio optimization (i.e. MVO is a second order approximation of the optimization of 

20 The endowment model was pioneered by Yale endowment CIO David Swensen in his 2000 book “Pioneering Portfolio Management”, 
who advocated the inclusion of alternative assets such as REITs and PE/VC funds into a traditional portfolio to capture liquidity premia. 
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any utility function). We will then show that various methods such as Market weights, Global Minimal Variance, and 
Maximal Diversification are simply specific implementations of MVO under certain assumptions for risk and returns of the 
portfolio components. We will also analyze generic risk budgeting models and specific applications such as Risk Parity and 
Equal Marginal Volatility. Some of these approaches were studied in greater detail in our previous work, such as in 
Investment Strategies No. 101: Risk Methods and The Risks of Risk Parity. 

Risk methods that we mentioned have the goal of constructing an optimal portfolio under certain assumptions for asset 
returns, covariances, and under constraints imposed by an investor (e.g. the portfolio should have the highest Sharpe ratio, 
minimal variance, each asset should have the same contribution to risk, etc.). We will refer to this process of allocation of 
risk between different factors as cross-sectional risk management. Once the risk weights are allocated across the factors 
(cross-sectional risk allocation), an investor can dynamically allocate risk between the portfolio and risk-less asset to 
further modify the risk profile. We will refer to this process as time-series risk allocation between the factor portfolio and 
risk-free assets. For instance, a popular approach is to target constant volatility of a risk factor portfolio. Portfolio losses 
can be minimized by applying principal protection techniques such as CPPI, or stop loss. The use of options can provide a 
wide variety of modifications to the risk profile, such as downside protection, tail protection, upside leverage, and 
collaring.  

The construction and risk management of a factor portfolio can be accomplished in three steps: 

• Factor design and selection: An investor designs (or adopts) factors to access traditional and alternative risk premia. 
Factors in the universe are then assessed based on their historical performance, volatility, diversification properties, 
tail risk properties, liquidity, capacity, etc. Factors can be pre-processed to have e.g. standardized volatility, or to be 
independent. 

• Cross-sectional risk allocation (or risk budgeting at the asset/factor level): An investor determines the relative factor 
weights. This can be based on views (e.g. expected returns, volatility, correlation) and specific risk/reward goals for 
a portfolio (e.g. maximum Sharpe ratio, equal marginal volatility). Model weights are periodically rebalanced (e.g. 
monthly or quarterly).   

• Time-series risk allocation (or risk budgeting at the portfolio level): An investor determines the optimal allocation of 
total portfolio risk. This is accomplished by dynamically allocating risk between the factor portfolio and the risk-free 
asset. A particular methodology is chosen to meet certain requirements such as to target constant volatility, protect 
principal investment, and stop losses below certain level. 
 

Figure 28 illustrates this process of portfolio design and risk management.  

Figure 28: Steps in the Portfolio Construction and Risk Management Process 
 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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The process can be illustrated with a simple example of a constant volatility, risk parity portfolio of equities and bonds. 
The first step would be to select risk factors, in this case traditional assets: equity and bond indices. This selection was 
likely based on the historical negative correlation between the two, and positive expected returns. To balance risk 
contributions between the two assets (of quite different volatility), the investor selects the Risk Parity cross-sectional risk 
management method. Finally, a time series method of volatility targeting is applied to obtain a constant volatility (e.g. 8% 
annualized volatility) portfolio. 

Through the rest of the report, we will introduce several mathematical concepts related to cross-sectional and time-series 
risk management. A full derivation of results often requires knowledge of mathematical methods such as linear algebra, 
matrix theory, and stochastic calculus. We will explain these concepts in simple terms so that they are understandable to 
readers without a rigorous mathematical background, but will also provide full technical details in the shaded 
“Mathematical Boxes”. These technical notes can be skipped, based on readers’ interest and inclination for theory. 
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Cross-Sectional Risk Allocation - Theory 
 
The goal of a portfolio optimization process is to create the best possible portfolio for a particular investment objective, 
given some assumptions for future asset performance. The optimization objective can be to achieve a portfolio with the 
lowest possible risk, highest Sharpe ratio, smallest tracking error relative to a benchmark, or other objectives specified by 
an investor. In order to obtain asset weights that will result in an optimal portfolio, an investor often needs to make 
assumptions on the future asset returns, volatilities and correlation between assets. These assumptions (forecast) are input 
into an optimizer (e.g. a computer code) or may already be built into a commercial model (such as MSCI Barra).  

The optimal portfolio construction is a straightforward mathematical procedure (e.g. see mean-variance optimization 
method later in this section). However, the forecasts for asset returns, volatilities and correlations are often not accurate, 
and an expected optimal mathematical solution may not turn out to be a portfolio with the desired properties after the fact. 
Given that asset returns are not easy to forecast, investors may choose to limit themselves to forecasting volatility and 
correlations. The rationale behind forecasting volatility and correlations (and not returns) is that these measures tend to 
exhibit properties of persistence and mean reversion, and their average levels should (in principle) be easier to estimate. To 
avoid forecasting asset returns, an investor can use simplifying assumptions such as equal expected returns, and equal asset 
Sharpe ratios. 

An investor’s objective is often expressed via a utility function (“utility” effectively quantifies an investor’s level of 
satisfaction/happiness with an economic outcome). A utility function quantifies the trade-off between the desired attributes 
of a portfolio such as high return, and undesirable properties such as high volatility and tail risk. An example of such a 
utility function is given below.  

Investor′s Utility = Expected Return − (Risk Aversion) × Variance 

To increase the investor’s utility, one would need to find asset weights with the best ‘trade-off’ between high expected 
return and low contribution to portfolio volatility. The parameter that determines the ‘trade-off’ between the return and risk 
parts of the utility function is called ‘risk aversion’. Levy and Markowitz (1979) showed that using a simple utility function 
such as the one above provides optimal solutions for a very broad set of utility functions, i.e. different types of investors 
(mathematically, the simple utility function above can be viewed as a second-order approximation for any standard utility 
function). A portfolio constructed by optimizing this utility function would also have the highest possible Sharpe ratio 
(provided returns, volatility and correlations are accurately forecast). 

In reality, the expected returns, volatility and correlations cannot be forecast with high accuracy, and return distributions 
are often not normal. This can make the optimization method based on a return-volatility trade-off inadequate. For 
instance, with the expectation of extreme market conditions, a portfolio that minimizes tail risk (rather than volatility) may 
outperform the maximum Sharpe Ratio portfolio.21 Readers could also refer to the Mathematical Box on page 19 for 
commonly used tail risk measures. 

The same optimization approach (maximizing the utility function) can be applied by investors whose objective is to 
outperform a particular benchmark. Instead of absolute return and variance, they would define the optimization objective 
via the return relative to a benchmark (such as long-term government bonds, or the S&P 500), and substitute portfolio 
volatility with tracking risk.  

In the rest of this Chapter, we will discuss various optimization methods and the properties of the resulting portfolios. We 
will start with explaining the simple choices of Market-weight and Fixed-weight portfolios and their relationship to generic 
results of Mean Variance Optimization (MVO). Then we will discuss some special cases of MVO such as Global Minimal 
Variance and Maximal Diversification. This will be followed by a discussion of generic Risk Budgeting (RB) and its 
special cases of Risk Parity and Equal Marginal Volatility. We will also introduce the Black-Litterman approach to 

21 This is usually done by including the third and fourth moments (skewness and kurtosis) in the utility function. See Bruder & Roncalli 
(2012) for a more detailed description of when the risk metric is different from portfolio volatility. 
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implementing asset return forecasts and briefly address issue of Tail risk. Finally, we will provide a simple summary of 
these methods and illustrate them in two-, and three-asset portfolio examples.  

In the last section of the chapter, we will implement all of the discussed risk models on a more realistic portfolio of 
traditional and alternative risk factors, as well as on a sample portfolio of J.P. Morgan tradable risk factor indices. We will 
compare the performance of these risk models under various market regimes, and highlight their pros and cons. 

In a series of mathematical boxes, we will provide technical details of the various methods. Readers who are not interested 
in mathematical formalism may skip these boxes, as they are not required to follow the text. In the first mathematical box 
we introduce the portfolio matrix notation that will be used in subsequent analyses. 
 

Mathematical Box (Portfolio Risk Notation) 

There are N assets in a portfolio22 . Asset returns are labeled with 𝑟1, … , 𝑟𝑁, and the risk-free rate is 𝑟𝑓. Superscript T 
indicates matrix transposition. 

• 𝒓 = ( 𝑟1, … , 𝑟𝑁)𝑇 is a 𝑁 × 1 column vector of the marginal excess return, 

• 𝝁 = ( 𝜇1, … , 𝜇𝑁)𝑇 = 𝐸(𝒓) is a 𝑁 × 1 vector so that 𝐸(𝑟𝑖) = 𝜇𝑖 for any i, 

• 𝛔 = ( 𝜎1, … ,𝜎𝑁)𝑇 is a 𝑁 × 1 volatility vector so that Var(𝑟𝑖) = 𝜎𝑖2 for any i,  

• 𝑺 = ( 𝑠1, … , 𝑠𝑁)𝑇 is a 𝑁 × 1 vector of Sharpe ratios so that 𝑠𝑖 = 𝜇𝑖 𝜎𝑖⁄  for any i,  

• 𝚲 = diag(𝜎𝑖) is a 𝑁 × 𝑁 diagonal matrix so that 𝚲−1𝝁 = 𝑺,  

• 𝑪 = � 𝜌𝑖𝑗�𝑁×𝑁
= Corr(𝒓,𝒓) is a 𝑁 × 𝑁 correlation matrix and 𝜌𝑖𝑖 = 1 for any i, 

• 𝚺 = � 𝜎𝑖𝑗�𝑁×𝑁
= Cov(𝒓,𝒓) is a 𝑁 × 𝑁 covariance matrix so that 𝜎𝑖𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗, 

• 𝒘 = ( 𝑤1, … ,𝑤𝑁)𝑇 is a 𝑁 × 1 column vector of the weights for the assets, 

• 𝟏 = ( 1, … , 1)𝑇 is a 𝑁 × 1 column vector of ones,  

• 𝟏𝑗 = ( 0, … , 1 … , 0)𝑇 is a 𝑁 × 1 column vector whose j-th element is 1 and all other elements are 0. 

 
Given the above notations, the portfolio return is given by 𝑟𝑝 = ∑ 𝑤𝑖𝑁

𝑖=1 𝑟𝑖, whose expected return and variance are given by 

• 𝜇𝑝 = 𝐸�𝑟𝑝� = ∑ 𝑤𝑖𝑁
𝑖=1 𝜇𝑖 = 𝒘𝑇𝝁 (portfolio excess return), and 

• 𝜎𝑝2 = Var�𝑟𝑝� = ∑ ∑ 𝑤𝑖𝑁
𝑗=1 𝑤𝑗𝑁

𝑖=1 𝜎𝑖𝑗 = 𝒘𝑇𝚺𝒘 (portfolio variance), 

• In addition, 𝜷 = ( 𝛽1, … ,𝛽𝑁)𝑇 = 𝚺𝒘 𝜎𝑝2⁄  is a 𝑁 × 1 vector, so that 𝛽𝑖 is the beta of the i-th asset with respect to the 
portfolio. 

 
The weights 𝒘 can either be under constraint23  

� 𝑤𝑖
𝑁

𝑖=1
= � 𝒘𝑇𝟏𝑖

𝑁

𝑖=1
= 𝒘𝑇𝟏 = 1 

or be unconstrained with the inclusion of a risk-free asset that can be lent or borrowed freely.  

22 The underlying instruments could be different asset classes or risk factors giving access to different systematic risk exposures.  
23 Different weight constraints could be imposed to avoid corner portfolio solutions or weight concentration etc. 
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The sensitivities of the portfolio return and volatility to the asset weights are given by: 

𝜕𝜇𝑝
𝜕𝒘

=
𝜕𝒘𝑇𝝁 
𝜕𝒘

= 𝝁 

𝜕𝜎𝑝
𝜕𝒘

=
𝜕√𝒘𝑇𝚺𝒘 

𝜕𝒘
=

1
2𝜎𝑝

𝜕𝒘𝑇𝚺𝒘 
𝜕𝒘

=
𝚺𝒘
𝜎𝑝

= 𝜷𝜎𝑝 

Hence, the change of portfolio return with a unit change of marginal weight corresponds to the marginal return, and the 
change of portfolio volatility with a unit change of marginal weight corresponds to the beta times portfolio volatility. 
 

 

Mean-Variance Optimization (MVO), Market Portfolio and Fixed Weight Allocation 

MVO was first proposed by Markowitz (1952). The goal of the method is to produce a portfolio with the highest Sharpe 
ratio. Specifically, the method solves the portfolio optimization problem by maximizing a simple utility function aiming for 
higher returns and lower risk. As a result, Mean Variance Optimization will result in an optimal portfolio with a maximum 
Sharpe ratio. Specifically, an MVO tries to maximize  

Expected Portfolio Return −
λ
2

 × Expected Portfolio Variance 

A risk aversion factor (λ, positive value) is used to balance the risk-return tradeoff. The larger the risk aversion factor (λ) 
is, the higher penalty investor puts on “risk" (i.e. the more risk averse the investor). When λ is equal to 0, an MVO will put 
100% weight in the best performing asset without regard to portfolio risk. On the other hand, when the risk aversion factor 
is very large, MVO will not be concerned with returns, and will simply minimize portfolio risk – resulting in a portfolio 
with lowest possible volatility (also called the Global Minimum Variance (GMV) portfolio).  

MVO is at the center of many traditional asset allocation approaches such as capitalization based allocations (Market 
Portfolio), and fixed weight investing (e.g. 60 bond / 40 equity portfolio). The Capital Asset Pricing Model (CAPM) 
introduced separately by Jack Treynor, William Sharpe and John Lintner suggests that the market portfolio is the optimal 
choice for investors seeking to maximize Sharpe ratio, and an asset’s expected returns are proportional to the asset’s beta to 
the market and the market’s returns. Under a set of assumptions24, the CAPM implies that the market portfolio25 is mean-
variance optimal portfolio and that all investors should hold a proportion of the market portfolio as it has the highest 
Sharpe ratio (the “Two Fund Theorem” suggests investors should allocate between market portfolio and risk-free asset). 
Currently, most equity investors are benchmarked to capitalization weighted indices – thus implementing a form of the 
MVO approach. Major equity benchmarks such as MSCI World, S&P 500, or MSCI Europe represent global and regional 
market portfolios and are thus approximately MVO optimal.  

In the mathematical box below we derive the MVO weights and also demonstrate the expected return of an individual 
security could be calculated through its beta to the market portfolio. 

 

24CAPM assumes that: 
1) Security markets are perfectly competitive (many small investors as price takers) 
2) Markets are frictionless (no taxes or transaction costs; information transparency) 
3) Homogenous MVO investors (same one-period horizon; all investors use MVO) 
4) All investors can lend and borrow unlimited amounts of the risk free asset 
25 The market portfolio is a portfolio consisting of all assets in the market, weighted proportionately to their market value 
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Mathematical Box (Mean-Variance Optimization) 

If the expected return 𝝁 and covariance matrix 𝚺 could be estimated with a degree of accuracy, the Mean-Variance 
Optimization (MVO) proposed by Markowitz (1952) maximizes the following utility function by changing the asset 
weights 𝒘:  

max𝒘 �𝐸(𝑹) −  
λ
2

Var(𝑹)�   or max𝒘 �𝒘𝑇𝝁 −
λ
2
𝒘𝑇𝚺𝒘� 

where λ is an investor-specific factor of risk aversion – higher (or lower) λ means more (or less) risk averse. 

In the unconstrained case, directly solving MVO (taking first derivative with respect to 𝒘 and equating to zero) results in 
the MVO portfolio weights: 

𝒘 = (λ𝚺)−1𝝁 

It can be shown that under this optimal solution, the ratio of the marginal contribution to portfolio return and the marginal 
contribution to portfolio risk is the same for all assets and equals the optimal portfolio Sharpe ratio �𝝁𝑇𝚺−1𝝁 = √𝑺𝑇𝑪−1𝑺.  

Under the CAPM framework, the market portfolio is mean-variance efficient in that it solves the MVO. The market factor 
of risk aversion (for an average investor) is given by  λmkt = �𝜇𝑀 − 𝑅𝑓� 𝜎𝑀2⁄ , where 𝜇𝑀 and 𝜎𝑀 are the expected return and 
volatility of the market portfolio and 𝑅𝑓 is the risk-free rate. Moreover, any efficient portfolio lies on the “Capital Market 
Line” which crosses the risk-free rate and market portfolio (Figure 29), where �𝜇𝑀 − 𝑅𝑓� 𝜎𝑀⁄  is the market price of risk (or 
market Sharpe Ratio) that determines the slope of the capital market line (CML). 
 

Figure 29: Market Portfolio and CAPM 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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To derive the CAPM, let’s consider a portfolio 𝑷 with a fraction of 𝜔 invested in the market portfolio with expected return 
𝜇𝑀 and variance 𝜎𝑀2  and the rest (1 − 𝜔) in an arbitrary security 𝑘 with expected return 𝜇𝑘 and variance 𝜎𝑘2. Suppose the 
covariance between the security 𝑘 and the market portfolio is 𝜎𝑘𝑀, the expected return and variance of such a portfolio are 
given by: 

𝜇𝑷 = 𝐸(𝑷) = 𝜔𝜇𝑀 + (1 −𝜔)𝜇𝑘 

𝜎𝑷2 = Var(𝑷) = 𝜔2𝜎𝑀2 + (1 − 𝜔)2𝜎𝑘2 + 2𝜔(1 − 𝜔)𝜎𝑘𝑀 

By the assumptions of CAPM, since the market portfolio is the tangent portfolio on the Capital Market Line as shown in 
Figure 29 above, the Sharpe ratio of 𝑷 should be maximized when 𝜔 = 1, where the slope of the Capital Market Line 
(CML) is given by 

CML Slope = �𝜕𝜇𝑷
𝜕𝜎𝑷

�
𝜔=1

= �𝜕𝜇𝑷 𝜕𝜔⁄
𝜕𝜎𝑷 𝜕𝜔⁄ �

𝜔=1
=
𝜎𝑀(𝜇𝑀 − 𝜇𝑘)
𝜎𝑀2 − 𝜎𝑘𝑀

 

Equating the above equation with market price of risk �𝜇𝑀 − 𝑅𝑓� 𝜎𝑀⁄  gives: 

𝜇𝑘 = 𝑅𝑓 +
𝜎𝑘𝑀
𝜎𝑀2

�𝜇𝑀 − 𝑅𝑓� 

This suggests that, under CAPM, the expected (excess) return of any security 𝑘 relates to the market portfolio through its 
beta with respect to the market: 𝛽𝑘 = 𝜎𝑘𝑀/𝜎𝑀2 . 

Despite the theoretical elegance of the MVO framework, it can sometimes fail in out-of-sample tactical asset allocation 
practices.  This is mainly due to the high sensitivity of MVO outputs to the input parameters and the difficulties in 
forecasting expected returns. Possible remedies include: (1) enhancing return forecasts through predictive signals or 
supplying expected return views, and (2) better risk management to avoid risk concentration. We will also review several 
proposals including the Black-Litterman approach, Minimum Variance Portfolio, Most Diversified Portfolio, Generic Risk 
Budgeting and Risk Parity Portfolio. 
 

 

During 1950s-1960s when the Markowitz portfolio theory and CAPM were introduced, a 60% stock / 40% bond mix 
roughly represented the market capitalization weights of the universe of investable US assets. The simple bond/stock 
allocation prescription indirectly follows MVO. In fact, from a domestic US investor’s point of view, the “market weight” 
of Treasury bonds in a Stock-Treasury bond portfolio has actually stood in the 20%-40% range over the past five decades. 
Based on market size data from the World Bank and US Treasury Department, Figure 30 shows that the market weight for 
US Treasury bonds averaged 31.7% during 1960 to 2012. If we include corporate bonds, the average market weight for 
bonds increased to 43.7% during 1960-2012. 
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Figure 30: Market sizes* of US equities and US Treasury bonds 
US$ in trillions 

  
 
Source: J.P. Morgan Quantitative and Derivatives Strategy, US Treasury. * Market cap data for US equities and Treasury bonds are from the World Bank and US Treasury respectively. Treasury 
security data includes Treasury Bills, Notes, Bonds, TIPS, United States Savings Bonds, and State and Local Government Series securities.  

 
In addition, historical data suggests that the relative performance of US equities versus Treasury bonds is mean-reverting 
on a long-term horizon (8-10 years). This is perhaps a good justification of why many traditional mutual funds still use a 
fixed weight strategic allocation. Figure 31 below shows that the market weight of US equities indeed acted as a contrarian 
indicator for the relative performance of the S&P 500 relative to 10-year Treasury bonds over a 10-year investment horizon 
– a high (low) market weight for bonds foreshadowed underperformance (outperformance) of bonds relative to stocks over 
the subsequent 10 years. Hence, in addition to an element of MVO, a fixed weight investor could enjoy this contrarian 
investing benefit by periodic portfolio rebalancing.  

While one might think that a fixed weight portfolio strategy makes sense when the prices of the assets are mean-reverting 
relative to market capitalization, Merton (1969) and Samuelson (1969) showed that fixed weight stock/bond portfolios are 
optimal under broader conditions. A special example of the fixed-weight portfolio method is the “equal weight” (EW) 
strategy. As its name suggests, EW assigns equal weights to all assets in the portfolio. Recent academic research found 
empirical evidence that this naïve approach is not inferior to more advanced models under certain market conditions 
[DeMiguel et.al (2009), Duchin and Levy (2009), and Kritzman et. al (2010)]. However, in our examples from the end of 
this chapter, we will show that a naïve EW method underperformed most other risk models. The main reason for EW 
underperformance is the high allocation of risk to volatile assets such as equities. Given these high allocations, EW models 
tend to underperform during market crises. 
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Figure 31: Market weight of US Treasuries as a long-term contrarian indicator* 
 

  
Source: J.P. Morgan Quantitative and Derivatives Strategy, US Treasury, Bloomberg. * Relative performance is calculated as the 10-year forward return difference of the S&P 500 total return and 
the total return from rolling a 10-year constant maturity Treasury bond contract annually. 

 

Despite its theoretical elegance, the success of MVO is highly dependant on the accuracy of the estimated returns, 
volatilities and correlations26 for the individual assets. If one uses incorrect return estimates in the MVO process, the 
resulting portfolio weights will perform poorly. Moreover, a relatively small change in return and covariance inputs may 
result in large changes in the output weights. The potential instability of MVO weights is often quoted as the main reason 
against its broader usage. For traditional assets, expected returns are very difficult to forecast, and the instabilities in the 
covariance matrix during the recent financial crisis created difficulties for MVO portfolios. MVO may still be the best 
approach for some of the alternative risk factors, where returns may be easier to forecast and the correlation structure may 
be more stable. However, MVO is also challenged by the non-normal properties of asset distributions, which could be 
equally problematic for traditional and alternative risk factor portfolios. 

There are many proposed improvements to the MVO approach. Popular methods include simplifying assumptions about 
expected returns and risk (such as in Global Minimal Variance, Maximal Diversification), directly supplying investor 
views and combining them with market consensus (such as Black-Litterman), or entirely circumventing return forecasting 
such as in a Risk Budgeting approach. We discuss all of these methods.  

 
  

26 See Appendix for a brief review of popular forecasting models for asset return, volatility and correlation matrix. 
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Global Minimum Variance (GMV) 

Given the potential drawbacks of MVO related to the sensitivity to return forecasts (model inputs), many investors decided 
to turn to purely risk-based portfolio methods. Focus on risk-based models further increased over recent years, as the global 
financial crisis shifted investor attention to preventing large losses.  

Global Minimum Variance (GMV) is a special case of MVO where an investor has very high risk aversion. In this case 
“risk avoidance” takes priority to “return maximization” and the optimization tries to find the weights that will result in a 
portfolio with the lowest possible volatility. As we will show in the mathematical box below, the GMV approach is also 
equivalent to a special case of an MVO in which the investor simply assumes that the expected returns for all assets are 
equal. Thus GMV may be an optimal approach for investors that are either highly risk averse, or don’t have any 
differentiating view on the performance of individual assets. An equal return assumption also implies that higher volatility 
assets have lower Sharpe ratios. While this may contrast with assumptions of efficient markets, there is some recent 
historical evidence that Sharpe ratios may indeed be lower for higher volatility assets (Volatility anomaly). 

Since GMV only depends on the estimated covariance matrix of returns, statistical methods such as multivariate GARCH 
are usually employed to improve the stability of covariance matrix estimates. Other methods can be used as well such as 
using option implied volatilities to forecast future realized volatility (see Investment Strategies No. 88: Signals from 
Options Markets). 

Despite the oversimplifying assumptions of GMV, the performance of this method has often been better than e.g. an EW 
approach. This partly reflects the market performance over the past several years, which was heavily influenced by risky 
asset draw-downs in 2008 and 2011. Additionally, a more pronounced ‘Volatility anomaly’ would have benefited GMV 
due to its assumption of equal returns. At the end of this chapter we will test the performance of risk models applied to 
realistic portfolios of traditional and alternative factors. While GMV outperformed EW and occasionally other models, its 
performance over the long time periods was inferior to Risk Budgeting models. The GMV outperformed during times of 
market stress, due to its disproportionate focus on minimizing risk (as opposed to a more balanced approach between risk 
and returns). 
 

Mathematical Box (Global Minimum Variance) 

In many cases, investors may prefer not to directly offer views on the asset returns. Instead, investors may make 
simplifying assumptions on the expected returns and focus on forecasting the risk. In the simplest case, a portfolio manager 
can just assume that the expected excess returns for all the assets are equal to a certain unknown constant c, such that 
𝝁 = 𝑐𝟏. Under this assumption, the original MVO simply becomes: 

max𝒘 �𝒘𝑇𝝁 −
λ
2
𝒘𝑇𝚺𝒘� = max𝒘 �𝑐𝒘𝑇𝟏 −

λ
2
𝒘𝑇𝚺𝒘� = min𝒘[𝒘𝑇𝚺𝒘] 

Maximizing the utility of constant return and negative variance, is equivalent to minimizing the portfolio variance 𝒘𝑇𝚺𝒘, 
whose solution is given by (we assume weights add to 1 or 𝒘𝑇𝟏 = 1): 

𝒘∗ =
𝚺−1𝟏
𝟏𝑇𝚺−1𝟏

 

Under the assumption of equal expected excess returns, the Sharpe ratio for each asset is inversely proportional to the 
corresponding volatility, and the optimal portfolio Sharpe ratio is given by: 𝑐√𝟏𝑇𝚺−1𝟏.  

As the asset beta is given by 𝜷 = ( 𝛽1, … ,𝛽𝑁)𝑇 = 𝚺𝒘 𝜎𝑝2⁄ , it follows that beta of each asset with respect to portfolio is the 
same. 
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Most-Diversified Portfolio (MDP) 

Another popular method based entirely on forecasted risk (i.e. does not require return forecasts) is the Most Diversified 
Portfolio (MDP). MDP maximizes a measure called the ‘diversification ratio’. Diversification ratio is defined as the ratio 
of the weighted average asset volatility to overall portfolio volatility. In other words, the portfolio diversification is high 
when the relatively high volatility of component assets results in overall low portfolio volatility through the offsetting 
effect of correlations. The simplest example is a portfolio of stocks and bonds. If stocks rally, and bonds crash, both assets 
exhibit a large move (high asset volatility). However, stock gains may offset bond losses, leading to constant portfolio 
value (low portfolio volatility). The mathematical box below provides a more precise definition of the diversification ratio. 

Although MDP was formally introduced by Choueifaty and Coignard (2008), the concept of maximizing diversification is 
hardly new. In fact, MDP is just a special case of MVO in which an investor assumes that the Sharpe ratios for all the 
assets are equal. In fact, if we assume the Sharpe ratios of all assets are equal, the diversification ratio is simply 
proportional to portfolio Sharpe ratio. In this case, maximizing the Sharpe ratio via MVO is the same as finding the most 
diversified portfolio. 

For uncorrelated assets, MDP gives a simple prescription of weighting the assets inversely to their individual volatility (see 
mathematical box below). In this specific case (uncorrelated assets), MDP becomes equivalent to another risk-based 
method called ‘Equal Marginal Volatility’. 

As we will show later in the chapter, the MDP approach has often outperformed the simplest EW method. On average, 
MDP performed similar to GMV as both models focused on lowering the portfolio volatility. These models outperformed 
during risky times (e.g. had lower draw-downs), but they underperformed Risk Budgeting based models such as Risk 
Parity and Equal Marginal Volatility over full market cycles. 

Diversification ratio is related to another theoretical concept called the “number of degrees of freedom” that MDP tries to 
maximize. This number represents the effective number of independent risk factors (independent assets) in the portfolio 
risk. 27 For instance, if all the assets are perfectly independent, the number of degrees of freedom is simply equal to the 
number of assets in the portfolio. In the presence of correlations, the “effective” number of independent risk factors will 
generally be different from the number of assets depending on the average level of correlation.  
 

Mathematical Box (Most Diversified Portfolio) 

Instead of assuming the expected excess returns for all the assets are equal (as in GMV), a portfolio manager could assume 
the expected Sharpe ratio of all the assets are equal (to a certain unknown constant c). In other words, expected return for 
each asset is proportional to its volatility.  

We can replace the expected returns in MVO utility function with the corresponding volatilities, and hence the optimal 
portfolio solution is given by maximizing 

max𝒘 �𝒘𝑇𝝁 −
λ
2
𝒘𝑇𝚺𝒘� = max𝒘 �𝒘𝑇𝝈 −

λ
2
𝒘𝑇𝚺𝒘� 

It follows that  
𝒘 = (λ𝚺)−1𝝈 = (λ𝚲𝑪)−1𝟏 

The risk aversion factor λ could be determined so that the portfolio weight sums up to 1. It can be verified that the portfolio 
solution above is mean-variance optimal. 

27 In statistical analysis, “degree of freedom” is usually referred as the trace of the "hat matrix", or the sum of the sensitivities of the 
fitted values with respect to the observed response values. Some other works use the concept of "entropy" in information theory to define 
degrees of freedom, usually calculated from variance/volatility contributions of the principal component factors. 

 70 

                                                 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

Another interpretation is that the MDP portfolio also maximizes the Diversification Ratio (DR). DR is simply the 
portfolio’s Sharpe ratio when the expected returns for all assets are equal to their volatilities:  

DR(𝒘) =  
∑ (𝑤𝑖𝜎𝑖)𝑁
𝑖=1

�∑ 𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝑖,𝑗

=
𝒘𝑇𝝈
𝜎𝑝

= �𝜌(𝒘)�1 − CR(𝒘)� + CR(𝒘)�
−1/2

 

DR can also be expressed as a function of (𝒘) , the volatility weighted average correlation of all the assets, and CR(𝒘), the 
volatility weighted concentration ratio (CR) of the portfolio as shown in the final expression above, where: 

𝜌(𝒘) =
∑ 𝑤𝑖𝜎𝑖𝑤𝑗𝜎𝑗𝜌𝑖𝑗𝑖,𝑗

∑ 𝑤𝑖𝜎𝑖𝑤𝑗𝜎𝑗𝑖,𝑗
 

CR(𝒘) =
∑ (𝑤𝑖𝜎𝑖)2𝑁
𝑖=1

(∑ 𝑤𝑖𝜎𝑖𝑁
𝑖=1 )𝟐 

If the weighted average correlation 𝜌(𝒘) = 0, then the maximum diversification weights are obtained via minimizing  
CR(𝒘) from which we obtain 𝒘∗ ∝  1/𝝈, suggesting portfolio weights are inversely proportional to the assets’ individual 
volatilities. In this case, 𝜌(𝒘∗) = ∑ 𝜌𝑖𝑗𝑖,𝑗 𝑁2⁄ , arithmetic average of the correlation matrix. As a result, under the case of 
zero average correlation, MDP is identical to another risk management approach called ‘Equal marginal volatility’ (see 
later in the report).  

A special case of this is uncorrelated assets or zero asset correlations. With zero asset correlation in an MDP portfolio, the 
concentration ratio simply becomes 1/N, where N is the number of assets, and the Diversification Ratio grows with number 
of assets as √𝑁. This can be seen from: 

CR(𝜌(𝒘) = 0, MDP) =
∑ (𝑤𝑖𝜎𝑖)2𝑁
𝑖=1

(∑ 𝑤𝑖𝜎𝑖𝑁
𝑖=1 )𝟐 =

∑ (1)2𝑁
𝑖=1

(∑ 1𝑁
𝑖=1 )𝟐 =

𝑁
(𝑁)2 =

1
𝑁

 

Hence, we have DR(𝜌(𝒘) = 0, MDP) = CR(𝜌(𝒘) = 0, MDP)−1/2 = √𝑁. 
 

 
So far, we have explained a generic MVO process and several special cases such as GMV, and MDP.  In our discussion of 
MVO, we maximized an investor’s utility function and showed that the resulting portfolio has the highest Sharpe ratio 
(Capital Asset Pricing Model tangent portfolio). One can approach portfolio optimization from a different angle – 
maximizing the portfolio’s Sharpe ratio from the beginning i.e. without reference to investor’s utility.28   

Mathematically, an optimal condition of a portfolio choice is obtained when any “tweak” of parameters leads to a sub-
optimal outcome29 (e.g. Pareto optimality in Economics is defined as a state when no one could be made better off without 
making someone else worse off). Below we show that the Maximal Sharpe Ratio (MSR) is achieved when an asset’s 
marginal contribution to return divided by marginal contribution to risk is equal to the portfolio Sharpe ratio (also called a 
necessary condition for “MSR efficiency”). This condition also implies that the assets’ expected return equals the assets’ 
beta to the portfolio times the portfolio’s expected return, similar to what we showed for CAPM. 

 

28 More generally, based on the theory of portfolio choices and Kelly’s criterion, an investor’s long-run growth rate is maximized by 
Sharpe ratio. The Kelly’s criterion produces optimal betting sizes for a series of risk-taking activities. 
29 Mathematically, this is called the “first-order” condition for an optimization problem. 
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Mathematical Box (Maximum Sharpe Ratio Portfolios) 

The Maximum Sharpe Ratio portfolio satisfies the following condition (portfolio’s Sharpe ratio does not change for small 
changes in asset weights): 

𝜕�𝜇𝑝(𝒘) 𝜎𝑝(𝒘)⁄ �
𝜕𝑤𝑖

=
𝜕𝜇𝑝 𝜕𝑤𝑖⁄

𝜎𝑝
− 𝜇𝑝

𝜕𝜎𝑝 𝜕𝑤𝑖⁄
𝜎𝑝2

= 0  for all 𝑖. 

This is equivalent to the following: 

𝜕𝜇𝑝 𝜕𝑤𝑖⁄
𝜕𝜎𝑝 𝜕𝑤𝑖⁄ =

𝜇𝑝
𝜎𝑝

  for all 𝑖. 

In other words, a portfolio having the same ratio of marginal excess return to marginal risk for all the assets, which equals 
to the portfolio Sharpe ratio is optimal under the mean-variance framework.  

Since 𝜕𝜇𝑝 𝜕𝑤𝑖⁄ = 𝜇𝑖 and 𝜕𝜎𝑝 𝜕𝑤𝑖⁄ = 𝛽𝑖𝜎𝑝, another way to express the condition for the maximal Sharpe ratio of a 
portfolio is that 

𝜇𝑖 = 𝛽𝑖𝜇𝑝  for all portfolio assets i. 

For an equal-weighted portfolio, 𝒘 = 𝟏/𝑁 and 𝛽𝑖 ∝ ∑ 𝜎𝑖𝑗𝑁
𝑗=1 . It follows that a condition for an equal-weighted portfolio to 

have maximum-Sharpe ratio is that expected returns 𝜇𝑖 are proportional to ∑ 𝜎𝑖𝑗𝑁
𝑗=1  which can be achieved if all the assets 

have the same expected return, correlation and marginal volatilities.  
 

 
Risk Budgeting (RB) 

Traditional portfolio allocation methods based on MVO use expected returns, volatilities and correlations as inputs to 
derive optimal portfolio weights. An alternative approach is to start with ‘risk budgets’ for each of the assets and then solve 
for portfolio weights. For instance, an investor can require that commodities add to 10% of total portfolio risk, Equities 
50%, and so on. Such risk budgets should add to 100%. Risk budgets can be based on the investor’s specific view on future 
performance of assets, or some general principles such as to assign equal risk budget to major asset classes or factor styles.  

RB can be used to avoid allocating too much risk to one asset or a group of correlated assets. An often quoted argument in 
support for risk budgeting is the traditional 60% Equity, 40% Bond allocation; it was argued that such a portfolio has 90% 
of risk in Equities and only 10% in Bonds, and is therefore prone to equities tail risk. A portfolio with more balanced risk 
budgets would select a lower allocation to equities and higher allocation to bonds. 

The contribution of each asset to portfolio risk is determined by the asset’s volatility as well as its correlation to other 
assets in the portfolio. Adding an uncorrelated asset will increase the volatility of the portfolio only in proportion to the 
asset’s weight and volatility, while adding a highly correlated asset will increase portfolio volatility largely through the 
correlations with other risky assets.  

Detailed derivation of Risk Budget weights and optimal conditions are provided in the mathematical box on the next page. 
The most important result is that in the Risk Budget approach, asset weights are equal to the risk budget, divided by the 
beta of the asset with respect to the portfolio. So RB methods rely on the quality of the forecast of the asset’s beta to the 
portfolio.  In practice, optimal weights cannot be determined by independently estimating asset betas. Weights are 
determined in an iterative numerical procedure (e.g. increasing the weight of an asset also changes the betas/weights of all 
other assets). If an investor believes that realized (ex-post) return contributions of each asset will be in line with the pre-
determined risk budget profile, the risk budgeted portfolio will also have the Maximum Sharpe Ratio. 
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As we will show at the end of this Chapter, when applied on realistic portfolios of traditional and alternative risk factors, 
RB models have outperformed EW allocation and MVO-based approaches (MVO, GMV and MDP) over the past 40 years. 
RB models such as Equal Marginal Volatility and Risk Parity struck a good balance between minimizing risk and 
maximizing returns, while maintaining relatively stable asset weights (unlike MVO that had high asset turnover). Part of 
the success of risk budgeting methods was in their reliance on more stable volatility and correlation estimates. 
Additionally, RB models were able to reduce draw-downs through balanced allocation of risk across portfolio components 
(typically higher weights in low volatility assets such as bonds). 
 
Risk Parity (RP) 

A special case of the RB approach is to assign equal risk budgets to all assets in the portfolio. This approach is also called 
Equal Risk Contribution, or Risk Parity. During recent years, Risk Parity (RP) methods drew a lot of interest because of 
their strong performance when applied to multi-asset portfolios. Given the higher marginal volatility of stocks, 
commodities and credit, these models had on average higher allocation to Treasuries. The strong performance of US 
Treasuries over the past few decades has helped these models to outperform most other asset allocation approaches. The 
most recent underperformance of Treasuries due to expected Fed tapering, as well as an increase in bond-equity 
correlations, caused RP portfolios to underperform many other approaches. More detailed analysis of recent 
underperformance of RP can be found in the report The Risks of Risk Parity. 

As we show in the mathematical box below, the total risk contribution of an asset to a portfolio is equal to the 
corresponding portfolio weight times its beta with the portfolio (the “beta” component incorporates the correlation of an 
asset to the portfolio). If an investor assumes the return contribution of each asset is equal, the RP portfolio has the highest 
Sharpe ratio. When all the pair-wise correlations of assets are zero, the RP portfolio allocates weights just based on assets’ 
volatility. This special case is called Equal Marginal Volatility approach (EMV) and is briefly discussed below.  

Equal Marginal Volatility (EMV) 

EMV assigns portfolio weights based on to the expected volatilities of individual assets. It underweights assets with higher 
volatility and overweights those with lower volatility so as to achieve an EMV contribution for all assets. However, the 
EMV approach ignores the contribution to portfolio volatility coming from asset correlations. In that regards, EMV is a 
special case of the MDP when the average level of correlation is zero, and a special case of RP when all the correlations  
are zero.  

The weight of an asset in the EMV approach is just the inverse of expected asset volatility. Investors often use recent 
historical volatility to estimate EMV (and more generally RP) weights. However, one can use option-implied volatilities 
that often have better predictive power than recent realized volatility. Similarly, investors can use option-implied betas to 
calculate weights in any RB approach. For a discussion on forecasting volatilities and betas from option implied data, see 
our report Investment Strategies No. 88: Signals from Options Markets. 

Mathematical Box (Risk Budgeting and Risk Parity) 

Risk of a portfolio is given by  

𝑅(𝒘) = �𝒘𝑇𝚺𝒘 

where 𝒘 is a N by 1 vector whose i-th element is wi such that 𝒘𝑇𝟏 = 1. 

Given a pre-determined set of risk budgets si  (so that ∑ 𝑠𝑖 = 1𝑁
𝑖=1 ),  a generic risk budgeting is an optimization process to 

solve 𝒘 by equating the proportion of total risk contribution (TRC) of the i-th asset with si : 

𝑠𝑖 =
𝑇𝑅𝐶𝑖
𝜎𝑝

=
𝑤𝑖
𝜕𝑅(𝒘)
𝜕𝑤𝑖
𝜎𝑝

= 𝑤𝑖
∑ 𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗𝑗

𝜎𝑝2
= 𝑤𝑖

(𝚺𝒘)𝑖
𝜎𝑝2

= 𝑤𝑖𝛽𝑖 
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It follows that normalized weights are 

𝑤𝑖 =
𝑠𝑖/𝛽𝑖

∑ 𝑠𝑖/𝛽𝑖𝑁
𝑖=1

   

The solution can be obtained by solving a Sequential Quadratic Programming (SQP) problem: 

min𝒘�(𝑤𝑖𝛽𝑖  − 𝑠𝑖)2
𝑁

𝑖=1

  

subject to the constraints that 𝒘𝑇𝟏 = 1 and 𝟎 ≤ 𝒘 ≤ 𝟏. In practice, weights could be solved by a gradient descent method 
or by numerical iterations – one adjusts the weights based on betas, then recalculates betas with new weights, etc. until all 
of the weights are proportional to risk budgets and inversely proportional to betas. 

The Maximum Sharpe ratio condition (optimality) is that 𝜇𝑖 = 𝛽𝑖𝜇𝑝 for all i, which implies that  

𝑤𝑖𝜇𝑖
𝜇𝑝

= 𝑠𝑖  

In other words, when the ratio of ex-ante total contribution of excess returns for the i-th asset to the total portfolio excess 
return is equal to 𝑠𝑖 (which is the same as ratio of ex-ante total risk contribution of the i-th asset to the total portfolio risk), 
the risk budgeting portfolio is optimal.  
 

Risk Parity (RP) as a special case 

When all the risk budgets si -s are equal to 1/N, the risk budget portfolio becomes a “risk-parity” portfolio (equal total risk 
contribution from each asset). According to the derivations in the generic risk budgeting case, the portfolio weights satisfy: 

𝑤𝑖 =
1/𝛽𝑖

∑ 1/𝛽𝑖𝑁
𝑖=1

 

which could be obtained by solving  

min𝒘�(𝑤𝑖𝛽𝑖 – 1/𝑁)2
𝑁

𝑖=1

  

subject to the constraints that 𝒘𝑇𝟏 = 1 and 𝟎 ≤ 𝒘 ≤ 𝟏. 

Similar to the generic risk budgeting case, when the ex-ante total contribution of excess returns for all the assets are equal 
to each other, the risk parity portfolio is optimal.  

When all correlations are zero (all off-diagonal elements of correlation matrix 𝜌𝑖𝑗), 

𝑠𝑖 =
𝑇𝑅𝐶𝑖
𝜎𝑝

= 𝑤𝑖
∑ 𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗𝑗

𝜎𝑝2
=
𝑤𝑖2𝜎𝑖2

𝜎𝑝2
 

the Risk Parity Portfolio becomes Equal Marginal Volatility (or zero-correlation MDP) with optimal weights. 

𝑤𝑖 =
𝜎𝑝
𝜎𝑖

1
√𝑁

=
1/𝜎𝑖

∑ 1/𝜎𝑖𝑁
𝑖=1
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Black-Litterman (BL) 

The BL framework was proposed by Fischer Black and Robert Litterman in 199030 to address the challenges of using 
MVO when there are no reliable return estimates. BL uses proper statistical methods to combine information implied by 
the market (market portfolio) and investors’ views on expected returns. Combining market information and the investor’s 
view results in return and covariance estimates that are then fed into a standard MVO process. The idea is that these 
estimates will lead to more robust (stable) MVO weights. 

The first step of applying the BL framework involves reverse engineering the expected returns from current market 
portfolio weights (reverse solving MVO for market weights, to obtain ‘market implied’ asset returns). This step establishes 
the so called ‘market prior’ distribution of the expected returns. In addition, investor views on absolute and relative 
performance of the assets are specified to form an ‘active portfolio’. The ‘market prior’ expected returns and specific 
investor views are combined in a Bayesian (conditional probability) framework to produce the so-called ‘posterior 
distribution’ of portfolio returns. Without investor views, BL is simply reduced to a CAPM market portfolio. 

With investor views, the optimal portfolio (the posterior) under the BL framework reflects a combination of market 
portfolio (‘market prior’) and a portfolio reflecting optimal application of the investor’s views. The investor also needs to 
set a parameter representing the relative weighting between the ‘market prior’ and ‘investor views’. The BL approach often 
results in more stable asset weights (as compared to traditional MVO) because the ‘posterior’ expected returns are 
anchored to a common ‘market prior’ returns. Additionally, while the ‘market prior’ is usually specified as a normal 
distribution around expected CAPM returns, the BL framework allows for other choices of a ‘market prior’ distribution. 

The BL is a flexible framework as it gives investors the ability to (1) specify the relative uncertainty of prior information 
e.g. uncertainty of market equilibrium versus investor views, and (2) incorporate other priors such as an EW allocation. 
The BL framework can be applied to more general scenarios - e.g. the prior distribution may not necessarily be based on 
CAPM (it could be based on a maximum diversified or risk parity portfolio). The active views do not have to be 
discretionary – they could be determined based on valuation model forecasts or be based on momentum indicators (i.e. 
using a factor approach to forecasting returns).  

The mathematical box below details the statistical derivation of the BL approach. In practice, most investors will use a 
simple software package to implement the BL model, and will not need to worry about theoretical considerations. 
 

Mathematical Box (Black-Litterman Approach) 

The Black-Litterman approach could be summarized by a four-step process: 

Step 1. Define the ’market  prior’  

We first start with the implied CAPM-Equilibrium asset returns 𝚷, which result in market weights when used as an input to 
MVO  

𝒘mkt = (λmkt𝚺)−1𝚷 

Backing out the returns from market weights gives 𝚷 = λmkt𝚺𝒘mkt. The original BL model assumes that 𝒓 follows a 
normal distribution with mean 𝚷 and covariance matrix 𝜏𝚺 where the scaling parameter 𝜏 describes the relative uncertainty 
of the market prior with respect to manager views31: 

𝒓 ∽ 𝑁(𝚷, 𝜏𝚺) 

30 The article was published in the Financial Analysts Journal in September 1992. See Black and Litterman (1992). 
31 See Marco Dion et. al, “The Black-Litterman Model: A Practical Approach to a Complex and Advanced Framework”, 19 April 2012 
for more details on how to set this scaling factor. 
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Step 2. Define the view on returns.  

Under the BL framework, an investor’s views are also normally distributed, with certain expectation and variance. For 
example, (𝑟1 − 𝑟2) ∽ 𝑁(3%, 1%2) describes a relative view that the first asset will outperform the second asset by 3% 
with a 1% standard deviation of uncertainty. In general, a return view could be described by the following:  

� 𝑝𝑖𝑗
𝑁

𝑗=1
𝑟𝑗 = 𝒑𝑖𝑇𝒓 ∽ 𝑁(𝑞𝑖 ,𝜔𝑖

2) 

where 𝑞𝑖 defines the “base-case” scenario for the i-th view,  𝒑𝑖 = ( 𝑝1, … , 𝑟𝑁)𝑇 is an 𝑁 × 1 column vector of the return 
weights, and the 𝜔𝑖 determines the related view uncertainty. If there are k independent views, they could be simultaneously 
described by the following matrix form: 

𝑷𝒓 ∽ 𝑁(𝒒,𝜴) 

Where 𝑷 = ( 𝒑1𝑇; … ;𝒑𝑘𝑇) is a 𝑘 × 𝑁 matrix, with each row representing weights on a particular return view, 

• 𝒒 = ( 𝑞1, … , 𝑞𝑘)𝑇 is a 𝑘 × 1 column vector of the base-case scenarios, 

• 𝛀 = diag(𝜔𝑖
2) is a 𝑘 × 𝑘 diagonal matrix with diagonal elements representing uncertainties with respect to the views.  

Conditional on an observation of the returns 𝒓, the above formulation suggests the base-case scenario vector 𝒒 describing a 
total number of k investor views follows a multi-variate normal distribution: 

�𝒒|𝒓 ∽ 𝑁(𝑷𝒓,𝜴) 

Step 3. Determine the Return Distribution Conditional on Views. 

Given market prior returns 𝒓 ∽ 𝑁(𝚷, 𝜏𝚺) and investor views �𝒒|𝒓 ∽ 𝑁(𝑷𝒓,𝛀), the combined returns i.e. joint vector (𝒓;  𝒒) 
also follows a multi-variate normal distribution. To calculate the distribution of �𝒓|𝒒 or expected return conditional on 
investor views, it suffices to determine the expectation and covariance matrix of (𝒓;  𝒒). By applying mathematical 
formulas (1) and (2) below, we have 

𝐸(𝒒) = 𝐸[𝐸(𝒒|𝒓)] = 𝐸[𝑷𝒓] = 𝑷𝜫 

Cov(𝒓,𝒒) = Cov�𝒓,𝐸(𝒒|𝒓)� = Cov(𝒓,𝑷𝒓) = 𝜏𝚺𝑷𝑻 

Cov(𝒒,𝒒) = 𝛀 + Cov(𝑷𝒓,𝑷𝒓) = 𝛀 + 𝜏𝑷𝚺𝑷𝑻 

It follows that the return distribution conditional on views �𝒓|𝒒 is also a multi-variate normal distribution, with expectations 
and covariance matrix determined by: 

𝐸(𝒓|𝒒) = 𝜫− 𝜏𝚺𝑷𝑻(𝛀 + 𝜏𝑷𝚺𝑷𝑻)−𝟏(𝑷𝚷− 𝒒) 

Cov(𝒓,𝒓|𝒒) = 𝜏𝚺 − 𝜏𝟐𝚺𝑷𝑻(𝛀 + 𝜏𝑷𝚺𝑷𝑻)−𝟏𝑷𝚺 

 

One can also verify that Cov(𝒓,𝒓|𝒒) = [(𝜏𝚺)−1 + 𝑷𝑇𝛀−1𝑷]−1. Computationally, if the numbers of views k is less than the 
number of underlying assets N, we would prefer to use the first formula given it involves inverting a 𝑘 × 𝑘 matrix; 
otherwise, the second formula is preferred. 

 
Step 4. Calculate the BL Optimal Portfolio. This is a relatively straightforward step as we can replace the expectation and 
covariance matrix in the traditional MVO by the conditional returns and covariance from Steps 1-3. 
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Mathematical Formula Used in Step 3 

(1) Joint and Conditional Normal Distribution  
Suppose 𝒓 is partitioned into 𝒓 = (𝒓1;𝒓2) with size [𝑞 × 1, (𝑁 − 𝑞) × 1], and if 𝒓1 and 𝒓1|𝒓2 are both normally 
distributed, then they are jointed normally distributed or 𝒓 follows a multi-variate normal distribution; Conversely, if 𝒓 
follows a multi-variate normal distribution with mean 𝝁 = (𝝁1;𝝁2) and covariance matrix  

𝚺 = �𝚺11 𝚺12
𝚺21 𝚺22

� 

Then, the distribution of 𝒓1conditional on 𝒓2 = 𝜶 is also a multi-variate normal with mean and covariance matrix below: 

𝐸(𝒓1|𝒓2 = 𝜶) = 𝝁1 − 𝚺12𝚺22−1(𝝁2 − 𝜶) 
Cov(𝒓1,𝒓1|𝒓2 = 𝜶) = 𝚺11 − 𝚺12𝚺22−1𝚺21 

(2) Unconditional Expectation and Law of Total Covariance  
For any random vectors X, Y and Z, if we know the conditional moments of X and Y given Z, then: 

𝐸(𝑿) = 𝐸[𝐸(𝑿|𝒁)] 
Cov(𝑿,𝒀) = 𝐸[Cov(𝑿,𝒀|𝒁)] + Cov�𝐸(𝑿|𝒁),𝐸(𝒀|𝒁)� 
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Tail Risk Hedging 

‘Tail event’ is usually defined as an adverse price move larger than 3 standard deviations. This definition is somewhat 
imprecise as it does not specify how to estimate a ‘standard deviation’ (e.g. recent asset volatility, long-term average, and 
option-implied volatility). Historically, tail events were much more frequent than what would be expected based on a 
normal distribution of asset returns. For instance, the probability of a 4 standard deviation drop in the S&P 500 over three 
months was ~20 times greater than what would be implied by assuming that quarterly returns are normally distributed 
(Figure 32, we defined standard deviation as the daily volatility over the trailing quarter) 

Given the damage caused by the 2008 tail event that impacted many traditional and alternative assets, many investors 
started adjusting their risk model to reduce tail risk. Another approach is to directly implement option based tail hedges, 
whose popularity has led to an increase in the cost of tail risk protection across traditional asset classes. Hedging tail risks 
is certainly a prudent risk management practice. However, investors need to evaluate the effectiveness and cost of tail risk 
management programs on an ongoing basis. 

 

While the subject of tail risk management is so broad that it would warrant a separate report, we will briefly discuss some 
of the basic approaches. Tail risk management can be approached from various angles: 

• One can change the optimization process to directly impose a penalty for tail risks. This can be accomplished by the 
inclusion of higher order risk measures directly in the optimization utility function. For instance, one can include 
Value-at-Risk (VaR), Conditional VaR (CVaR32) or Kurtosis, into the utility function, assign tail risk aversion and 
derive new optimal portfolio weights. 

• A simpler approach is to include or overweight assets that had favorable historical tail risk properties. Investors can 
examine the historical Kurtosis, Draw-down, and co-Kurtosis properties of individual factors. Assuming these tail-
hedging properties persist, the investor can simply increase allocation to tail-risk favorable assets. 

32 Conditional VaR is also known as Expected Shortfall or Expected Tail Loss.  

Figure 32:  Frequency of Adverse Quarterly Moves in the S&P 500 
(expressed as # of standard Deviations). Table inset compares 
realized and theoretical probability (based on Normal distribution) 

 

 
 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 33:  Tail Risk Reduction through Tail Hedge Diversification (Sep 
2006 – Dec 2012) 
 

 
 
 
 Source: J.P. Morgan Quantitative and Derivatives Strategy. * VEPO refers to J.P. Morgan Macro 
Hedge Vepo US Index (Bloomberg Ticker: JPMZVPUS Index) which gives access to volatility 
premium during normal market conditions and provides tail-risk protection when the VIX futures 
curve becomes backwardated; Bond refers to J.P. Morgan US Government Bond Index 
(Bloomberg Ticker: JPMTUS Index) over J.P. Morgan 1-month US$ Cash Index (JPCAUS1M 
Index) 
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• Finally, investors can buy derivative-based tail risk hedges. Examples are out of the money put options on equities and 
commodities, out of the money swaptions on rates and credit spreads. Many dealers are pricing over the counter options 
that can provide tail risk protection for custom portfolios of traditional and alternative assets. 

The first method extends the mean-variance framework by introducing tail risk measures and it often involves technically 
complex optimizations. The effectiveness and robustness of the optimization approach is questionable given the lack of 
reliable tail risk forecasts.  

The second method tackles the problem by examining the historical behavior of different tail risks. This practical approach 
could be implemented more easily by introducing or overweighting instruments with offsetting tail risk properties. The 
type of tail-risk diversifier can be chosen based on the nature of expected tail risk (e.g. if an investor is hedging against a 
tail event that includes a high inflation scenario, gold may be a better hedge than treasury bonds). Below we will analyze a 
simple example of tail hedge diversification with a long volatility position. In the next section we will also briefly discuss 
option-based tail risk strategies. 

Suppose a US fund manager benchmarked against US large-cap equities was trying to reduce portfolio tail risk at the 
beginning of May 2008 in anticipation of a market crash. By examining the historical episodes of equity draw-down, the 
manager would have found that the implied volatility index VIX and US Treasury bonds had negative co-Kurtosis with 
Equities and many other risky assets. These historical findings are also economically justifiable as equity selloffs usually 
result in increased demand for portfolio protection (volatility) and for US Treasury bonds due to flight to quality.  

Hence, the manager can consider four alternatives: (1) a long-and-hold strategy in S&P 500; (2) a balanced portfolio that 
includes 20% allocation to US Treasury Bonds through J.P. Morgan Treasury Bond Index (JPMTUS Index); (3) a portfolio 
of 80% in S&P 500, 10% in US Treasury bonds and the remaining 10% in J.P. Morgan MacroHedge Vepo US Index that 
provides long volatility exposure; (4) a tail-risk hedged portfolio of 80% in the S&P 500 and the remaining 20% in the J.P. 
Morgan Macro hedge Vepo US Index. Figure 33 shows the historical performance of a US$100 investment in each of the 
four investment strategies.  

From Figure 33, we see that the tail-risk hedged portfolios (3) and (4) delivered the best ex-post performance during May 
2008 to Nov 2013. The balanced S&P 500/Bond portfolio outperformed the equity benchmark during 2008-2012 and gave 
back the out-performance in 2013 due to underperformance of Treasury bonds in anticipation of Fed tapering. Table 22 
below shows that the out-performance of (3) and (4) was achieved via reducing tail risks. For example, the maximum 
drawdown and maximum drawdown durations for portfolio (4) were less than half of those for portfolio (1).  

Table 22: Comparisons of Performance and Tail Risk Metrics (May 2008 – Nov 2013) 
 100%S&P 500 80%S&P 500 + 

20%Bond 
80%S&P 500 + 

10%VEPO+10%Bond 
80%S&P 500 + 

20%VEPO 
Average (%) 8.1 7.2 10.2 13.2 
CAGR (%) 6.6 6.3 9.9 13.2 
STDev (%) 18.2 14.4 12.4 12.5 
MaxDD (%) -47.3 -38.9 -30.6 -22.2 
MaxDDur (in yrs) 2.8 2.7 1.8 1.2 
Sharpe Ratio 0.44 0.50 0.82 1.06 
Sortino Ratio 0.62 0.70 1.31 1.81 
Calmar Ratio 0.50 0.61 1.69 2.48 
Pain Ratio 0.67 0.82 2.12 4.33 
Reward to 95VaR 0.08 0.08 0.13 0.20 
Reward to 95CVaR 0.05 0.06 0.12 0.15 
Hit Rate 0.64 0.63 0.66 0.67 
Gain to Pain 1.39 1.45 1.81 2.13 
Skewness -0.82 -0.88 -0.38 -0.35 
Kurtosis 1.07 1.35 -0.07 -0.17 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * VEPO refers to J.P. Morgan Macro Hedge Vepo US Index (Bloomberg Ticker: JPMZVPUS Index) which gives access to volatility 
premium during normal market conditions and provides tail-risk protection when the VIX futures curve becomes backwardated; Bond refers to J.P. Morgan US Government Bond Index 
(Bloomberg Ticker: JPMTUS Index) over J.P. Morgan 1-month US$ Cash Index (Bloomberg Ticker: JPCAUS1M Index). ** Performance-risk analytics are based on monthly excess return data. 
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The risk of selecting and overweighting assets that historically provided tail risk protection is that these assets may fail to 
do so in the future. For instance, in an unlikely event of a US dollar crisis and contagion between equities and government 
bonds, US Treasuries may fail to perform as a tail risk hedge for a risky portfolio. Similarly, it is possible (but unlikely) 
that a portfolio experiences a decline over an extended time-period (e.g. one quarter) during which time volatility does not 
increase significantly (and hence volatility fails to provide tail risk protection).  

 

Comparison of Cross-Sectional Risk Models 

Before we compare the performance of different risk models on a portfolio of three traditional assets – Stocks, Government 
Bonds and Credit (and later on in the chapter on a realistic portfolios of alternative risk factors), we wanted to summarize 
and compare theoretical properties of different risk methods. Table 23 below shows the main objectives of different risk 
methods as well as conditions under which each of these methods leads to an optimal portfolio. Despite different 
objectives, each of the methods solves an MVO process under specific assumptions on asset returns and covariance. 
 

Table 23: Asset Allocation Methodologies, Their Objectives and Conditions for Optimality 

Asset Allocation Method Objective Conditions for Portfolio to be Mean Variance Optimal 

Market weight (MW) To obtain market portfolio Efficient market conditions as in CAPM 
 

Equal weight (EW) Each asset has equal weight Expected return for the asset  is proportional to the sum of the 
corresponding row of the covariance matrix 

Fixed weight (FW) Specific weights for each of Asset Expected return for the asset  is proportional to the weighted  
average of the corresponding  row of the covariance matrix 

Mean-Variance Optimization (MVO) Achieve Maximum Portfolio Sharpe ratio Ex Ante always. Ex Post if asset return and covariance forecasts 
were accurate 

Black-Litterman (BL) Achieve Maximum Sharpe ratio after 
incorporating expected return views Posterior expected return is proportional to posterior beta 

Global Minimum Variance (GMV) To obtain minimum variance Equal expected returns for all assets 

Most-Diversified Portfolio (MDP) To obtain maximum diversification ratio Equal Sharpe ratios for all assets 

Equal Marginal Volatility (EMV) Each asset has equal marginal volatility Expected return for the asset is proportional to the correlation 
weighted marginal volatility 

Risk Parity (RP) Equal total risk contribution for each asset Equal total return contribution from each Asset 

Generic Risk Budgeting (RB) Specific total risk contribution for each asset Total return contribution from each Asset is the same with the 
corresponding total risk contribution 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
A potential logic behind the selection of a risk method is shown in the diagram on the next page. Decision variables for 
selection of a risk model include specific views on asset risk, returns, or Sharpe ratio. While assumptions such as ‘equal 
returns’ or ‘equal Sharpe ratios’ may seem overly simplistic, they do relate to some realistic market regimes. For instance, 
in an efficient market regime one would expect assets to have similar Sharpe ratios (return proportional to risk), while in 
the recent ‘Volatility Anomaly’ market regime, assets may have similar returns, i.e. high volatility assets having lower 
Sharpe ratios than low volatility assets. 
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Figure 34: Cross-sectional portfolio risk allocation at an asset/factor level 
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

All of the risk models discussed are related to each other under certain conditions. As shown in Figure 35 below, each 
portfolio method discussed is an implementation of MVO under certain assumptions. Working from the bottom of the 
diagram, EW is an EMV if we assume equal asset volatilities; EMV is an MDP if we assume zero average correlation; and 
finally MDP is an MVO if we assume equal marginal Sharpe ratios. GMV is an MDP if the asset volatilities are the same, 
and it is MVO if the expected returns are the same. The condition for the equivalence of MDP and RB is more 
complicated: it is achieved when the portfolio weight is proportional to the ratio of risk budget to marginal volatility. RP 
becomes EMV for zero correlation or equal volatility weighted correlations. RP also becomes general RB for non-equal 
risk budgets, and it becomes MVO for equal return contributions from each asset. We did not include BL in the diagram 
below as it depends on specific investor views. Detailed technical explanation of links between risk methods is given in the 
Appendix. 

Figure 35: Theoretical Links between Various Portfolio Allocation Methods 
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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To illustrate the properties of risk methods with a simple example, we design two-asset and three-asset portfolios. The 
simplest example is a two-asset portfolio of stocks and bonds. We can assume that the expected excess returns of stocks 
and bonds are 10% and 5%, annualized volatility 20% and 10%, respectively, and correlation coefficient of -10% between 
the two assets. Under these assumptions, Table 24 below shows the portfolio weights, return contribution, risk contribution 
as well as Sharpe/diversification ratios for each of the risk methods.33 In the simplest two asset case, MVO, EMV, MDP 
and RP generated the same portfolio weights as well as the optimal return/risk contribution profiles. Note that the EW 
approach had the worst Sharpe ratio as it allocated excessive risk to equities. GMV also lagged as it overweighed Bonds to 
minimize portfolio risk. 

Table 24: A stylized example of stock/bond asset allocation 

 Portfolio 
Weights 

Return 
Contribution 

Risk  
Contribution 

Return Contri/ 
Risk Contribution Sharpe 

Ratio 
Diversification 

Ratio  Stock Bond Stock Bond Stock Bond Stock Bond 
EW 50% 50% 67% 33% 83% 17% 81% 192% 0.70 1.40 
MVO 33% 67% 50% 50% 50% 50% 100% 100% 0.75 1.49 
EMV 33% 67% 50% 50% 50% 50% 100% 100% 0.75 1.49 
GMV 22% 78% 36% 64% 22% 78% 164% 82% 0.71 1.43 
MDP 33% 67% 50% 50% 50% 50% 100% 100% 0.75 1.49 
RP 33% 67% 50% 50% 50% 50% 100% 100% 0.75 1.49 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

In the three asset example analyzed below, we will find more differentiating properties between the risk models. We will 
also try to demonstrate some patterns (‘Symmetries’) exhibited by parameters of each of the models. Selections of assets 
for the three-asset model are: 

• Stock portfolio (Stock) with expected excess return of 10% and volatility of 20% (Sharpe ratio: 0.5); 

• Government bond portfolio (Bond) with expected excess return of 5% and volatility of 10% (Sharpe ratio: 0.5); 

• Corporate bond portfolio (Credit) with expected excess return of 10% and volatility of 15% (Sharpe ratio: 0.67); 

The correlation between the stock index and government bond index is -10%; the correlation between the stock index and 
corporate bond index is 30%; the correlation between the government bond index and corporate bond index is -30%. 
Optimized portfolio weights, return/risk contribution, beta, volatility-weighted average correlation (VolCorrel), portfolio 
Sharpe ratio as well as diversification ratio for the risk models are summarized in Table 25 below for EW, MVO, EMV, 
GMV, MDP, and RP.  

33 The marginal contribution to return/risk is the sensitivity of portfolio return/risk with respect to its corresponding weight and total 
contribution to return/risk is the marginal contribution times the corresponding portfolio weight. If we denote MRC marginal 
contribution to return, MCTR marginal contribution to risk, TRC total contribution to return and, CTR total contribution to risk for an 
asset, attribution of portfolio return/risk (risk attribution only holds for risk metrics satisfying Euler’s homogenous conditions) is 

Portfolio Return = TRC1+TRC2 +  … + TRCN

Portfolio Risk = CTR1 + CTR1 + ⋯  + CTRN

with TRC𝑖 = 𝑤𝑖 × MRC𝑖 and CTR𝑖 = 𝑤𝑖 × MCTR𝑖, where 𝑤𝑖 stands for portfolio weight for the i-th asset. Since the marginal return 
contribution for an asset is just its return, the (total) percentage return contribution is equal to portfolio weight times its return and 
divided by portfolio return. In the Mathematical box on page 63, we showed that the MRC of an asset is proportional to its beta with 
respect to the portfolio. 
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Table 25: Portfolio weight, return/risk contribution, beta, volatility-weighted average correlation, portfolio Sharpe ratio and diversification 
ratio for a stock/gov bond/corp bond portfolio; shaded areas indicate portfolio symmetries specific to different risk models 

 Portfolio Weight Return Contribution Risk Contribution Return Contr./Risk Contr. Sharpe 
Ratio 

Divers. 
Ratio 

 Stock Bond Credit Stock Bond Credit Stock Bond Credit Stock Bond Credit 
EW 33.3% 33.3% 33.3% 40% 20% 40% 61% 5% 35% 0.7 4.4 1.1 0.90 1.62 
MVO 11.5% 52.5% 36.1% 16% 36% 49% 16% 36% 49% 1.0 1.0 1.0 1.04 1.83 
EMV 23.1% 46.2% 30.8% 30% 30% 40% 43% 21% 36% 0.7 1.4 1.1 1.00 1.79 
GMV 8.1% 62.0% 30.0% 12% 45% 43% 8.1% 62% 30% 1.4 0.7 1.4 1.01 1.80 
MDP 14.9% 54.7% 30.3% 21% 38% 42% 23% 42% 35% 0.9 0.9 1.2 1.03 1.85 
RP 19.1% 51.5% 29.4% 26% 35% 40% 33% 33% 33% 0.8 1.0 1.2 1.02 1.84 
 

 Asset Beta Weight x Volatility Vol Weighted Average Corr Sharpe Ratio/VolCorrel Port. 
Return 

Port. 
Volatility 

 Stock Bond Credit Stock Bond Credit Stock Bond Credit Stock Bond Credit 
EW 1.8 0.1 1.0 6.7% 3.3% 5.0% 52% 8% 40% 1.0 6.4 1.7 8.3% 9.3% 
MVO 1.4 0.7 1.4 2.3% 5.2% 5.4% 26% 26% 35% 1.9 1.9 1.9 7.4% 7.1% 
EMV 1.9 0.5 1.2 4.6% 4.6% 4.6% 40% 20% 33% 1.3 2.5 2.0 7.7% 7.7% 
GMV 1.0 1.0 1.0 1.6% 6.2% 4.5% 19% 38% 25% 2.6 1.3 2.6 6.9% 6.8% 
MDP 1.5 0.8 1.2 3.0% 5.5% 4.6% 29% 29% 29% 1.7 1.7 2.3 7.3% 7.0% 
RP 1.7 0.6 1.1 3.8% 5.1% 4.4% 35% 26% 30% 1.4 1.9 2.2 7.4% 7.3% 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

To visualize the relationship between different portfolio methods, we also identify each optimized portfolio on the risky-
asset efficient frontier, shown in Figure 36. The horizontal axis in the figure is portfolio volatility and the vertical axis is 
portfolio expected return. Each point in the risky asset efficient frontier is achieved by minimizing portfolio volatility at a 
certain level of expected return (or equivalently maximizing portfolio expected return at a certain level of portfolio 
volatility34).  

Figure 36: Risky asset “efficient” frontier of the Stock, Bond, and Credit portfolio 

  
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

34 In Operations Research, these two optimizations are called “dual problems” that lead to the same set of solutions. 
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The Equal Weighted (EW) portfolio by definition has equal weights (1/3). Although the EW method allocates equal 
dollar weights to the three assets (and therefore has symmetry in portfolio weights), its return and risk contributions are 
predominantly from high volatility assets (stocks and corporate bonds return contribution is 80%; and risk contribution 
95%). As a result, the EW portfolio is not well diversified - its diversification ratio is 1.6, the smallest among the six 
portfolio methods under comparison. It also had the worst Sharpe ratio, and highest return and volatility. If expected 
returns, volatilities and correlations are all the same for all assets, an EW portfolio would be equivalent to MVO, and all 
the other portfolio methods will be reduced to equal weights.  
 

The Equal Marginal Volatility (EMV) portfolio is designed to have equal marginal volatilities. Although the portfolio is 
weighted to achieve equal marginal volatility – its risk contribution is not equal because of non-zero correlations. In fact, 
the stock index contributes 43% of the total portfolio risk because of its higher average correlation compared to Bonds and 
Credit.  As marginal volatilities of different assets are usually different, an EMV portfolio is usually a better benchmark 
than the EW. This can also be noted from the higher Sharpe ratio of EMV compared to EW. Academic researchers 
commonly use an EMV portfolio as a simple and transparent method to allocate risk between factors. See, for example, 
Moskowitz et.al (2012) and Asness et.al (2013).  
 

Mean-Variance Optimization (MVO) lies on the ex-ante risk asset efficient frontier as a tangent portfolio with maximum 
Sharpe ratio. The MVO achieved the highest Sharpe ratio (by definition as we assumed that forecasted returns and 
volatilities were actually realized) and diversification ratio of 1.83, close to the maximum achievable level of MDP (1.85).  
The risk symmetry that MVO achieves is manifested in equal ratios of return contribution to risk contribution for all the 
three underlying assets35. Later in this chapter, we will analyze performance of actual risk factor portfolios, and will find 
that MVO often underperforms other risk model due to discrepancy between forecasted and actually realized performance 
of individual assets. 
 

The Global Minimum Variance (GMV) portfolio resides in the far left hand side of the efficient frontier. It achieves 
minimum portfolio volatility (as well as the lowest returns) by increasing the weight in less volatile (Bond) and more 
diversification-capable (Credit) instruments. An interesting fact about GMV is that its total risk contributions for each asset 
are equal to the asset portfolio weights. For example, Government bonds contribute 62% of the total portfolio volatility in 
GMV, the same as the Government bonds’ portfolio weight. This fact holds in general because GMV assets’ betas with 
respect to the portfolio are the same and equal to one. Since risk contribution is just the asset’s portfolio weight times its 
beta, portfolio weights and asset risk contributions are the same.  
 

Most Diversified Portfolio (MDP) achieved (by definition) the highest diversification ratio, and its Sharpe ratio is very 
close to MVO (1.03 compared to the maximum achievable level of 1.04). This is because the ex-ante Sharpe ratios of the 
three assets are very close, and we have previously shown that if the Sharpe ratios of the assets are the same, MDP is 
equivalent to MVO. When marginal volatilities are equal, the diversification ratio is proportional to the inverse of portfolio 
volatility. Under such conditions, MDP becomes a GMV portfolio. If the volatility weighted average correlation of the 
assets is zero, the solution to MDP is the same as an EMV. Moreover, the risk symmetry that MDP achieves is equal 
volatility-weighted average correlation for the underlying assets (or symmetry in diversification). In our three-asset 
example, these weighted correlations are the same at 29% for all three assets 36. 

35 Another way to express this symmetry is that MVO achieves equal ratios of asset Sharpe ratio to volatility weighted average asset 
correlation, i.e. symmetry in risk-adjusted performance vs. diversification abilities. 
36 Because of the dual role of marginal volatility and portfolio weight in the case of MDP, we can also show that the MDP-optimal 
weights for another portfolio with marginal volatility proportional to the MDP weight is equal to the scaled marginal volatility of the 
original assets. In our three-asset example, suppose we have another hypothetical portfolio of assets has marginal volatilities of 14.9%, 
54.7% and 30.3% (corresponding to the portfolio weight of the MDP portfolio) and the same correlation structure with the original 
stock/gov bond/corp bond portfolio. The MDP optimal weight for this new portfolio becomes 20%/45% = 44.4%, 10%/45 = 22.2% and 
15%/45% = 33.3%, which are proportional to the marginal volatility of the original underlying assets. 
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Risk Parity (RP) portfolio is defined by equal total risk contributions (risk contribution symmetry). This is achieved by 
weighting each asset inversely with its beta with the portfolio. Stocks and Credit have higher beta, and hence receive lower 
weights, while Bonds have lower beta, and hence receive higher weight. Even though RP does not aim to maximize 
returns, it achieved a high Sharpe ratio as the ratios of return contribution to risk contribution were close to 1, which is a 
condition for maximum Sharpe ratio.  

Table 26 below lists empirical symmetries for each of the methods we studied. For example, MVO aims to achieve 
symmetry in return contribution versus risk contribution (Return/Risk Sensitivity Symmetry) and GMV to achieve 
symmetry in portfolio weights and risk contributions. 

Table 26: Objectives and symmetries for various asset allocation methodologies 

Asset Allocation Method Objectives to Achieve Risk Model “Symmetry” 

Equal weight (EW) Equal weights Equal Portfolio Weights 

Mean-Variance Optimization (MVO) Maximum portfolio Sharpe ratio Equal Return contribution to Risk contribution Ratios 

Global Minimum Variance (GMV) Minimum variance  Equal Asset Beta, Portfolio Weights vs. Risk Contribution 

Most-Diversified Portfolio (MDP) Maximum diversification ratio Equal Volatility Weighted Average Correlation 

Equal Marginal Volatility (EMV) Equal Marginal Volatility Equal Asset Weighted Volatility 

Risk Parity (RP) Equal total risk contribution  Equal Asset Risk Contribution 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 

Robustness of risk models to changes in leverage and inclusion of similar assets 

Risk models can in some cases be ‘thrown-off’ by the inclusion of similar assets in the portfolio, or change in the leverage 
of individual assets. For instance, if an investor includes two carry strategies with nearly identical risk properties, will the 
risk model simply increase the total risk exposure to carry, or will it properly allocate pre-determined carry risk between 
the two strategies? Another question is how well the model deals with leverage. For instance, if we include an instrument 
with built-in leverage, will the risk model eliminate the asset entirely based on higher volatility or properly reduce the risk 
allocation, but keep the potentially important asset in the mix. 

The requirement that the optimal portfolio weights are not affected by the introduction of leverage and “redundant” 
assets 37 is often stated as “portfolio invariance” requirements: 

Leverage invariance: Portfolio weights of the unleveraged assets should not be affected by applying leverage on certain 
assets. For example, suppose a portfolio is constructed with three assets: Stocks, Bonds, and Credit. The “leverage 
invariance” property requires the same return/risk contribution profile on the three assets if the Credit index were leveraged 
up by a factor 2.  

Redundancy invariance: Portfolio weights of the unleveraged assets should not be affected by introducing one or more 
combinations of the original assets. Again, for the portfolio with Stocks, Bond and Credit, the “redundancy invariant” 
property requires the same return/risk contribution profile from the original three assets if another “asset” equal to a 
“60/30/10%” weighted Stock/Bond/Credit index is added.   

A special case of “redundancy invariance” is the “duplication invariance” property, which requires that the introduction 
of a nearly identical asset/factor doesn't change the unlevered weight for the original portfolio. For example, consider a US 
equity-bond investor originally invested in 60%/40% S&P 500/US Government Bonds through direct cash holdings. After 

37 This is consistent with the rationales in Choueifaty et.al (2013). 
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introducing a US Government Bond ETF as another “asset” into the portfolio38 which is nearly 100% correlated with the 
original bond position, a “duplication invariant” portfolio program should put a total weight of 40% in the new cash + ETF 
position in US government bonds and the remaining 60% to the S&P 500.  

Below we examine the leverage and redundancy properties of risk models on our three asset example. Although our 
observations are based on a specific model, the conclusions are consistent with more rigorous mathematical proofs and 
apply to any portfolio.  
 

Leverage Invariance: For the Stock, Bond and Credit portfolio, we introduce 2x leverage on the Credit component. Table 
27 below summarizes the portfolio weights for different allocation methods. We find that MVO, EMV, MDP and RP are 
leverage invariant, while EW and GMV are not.  
 
Table 27: Portfolio weight before and after introducing 2x leverage in Credit 

 Weights in “New” Assets New Effective Weights Original Weights Leverage 
Invariant? 

 Stock Bond 2xCredit Stock Bond Credit Stock Bond Credit 
 EW 33% 33% 33% 25% 25% 50% 33% 33% 33% No 
 MVO 14% 64% 22% 11% 52% 36% 11% 52% 36% Yes 
 EMV 27% 55% 18% 23% 46% 31% 23% 46% 31% Yes 
 GMV 14% 75% 12% 12% 67% 21% 8% 62% 30% No 
 MDP 18% 64% 18% 15% 55% 30% 15% 55% 30% Yes 
 RP 22% 60% 17% 19% 51% 29% 19% 51% 29% Yes 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Duplication invariance: Similarly, we can introduce to the Stock, Bond and Credit portfolio a “new asset” which is just a 
duplication of the Credit index (or a nearly identical asset). Table 28 below summarizes the portfolio weights for different 
allocation methods. We find that MVO, GMV and MDP are duplication invariant, while EW, EMV and RP are not.  

Table 28: Portfolio weight before and after introducing a “duplicate” credit asset 

 Weights in “New” Assets New Effective Weights Original Weights Duplication 
Invariant? 

 Stock Bond Credit Credit’ Stock Bond Credit Stock Bond Credit 
 EW 25% 25% 25% 25% 25% 25% 50% 33% 33% 33% No 
 MVO 11% 52% 18% 18% 11% 52% 36% 11% 52% 36% Yes 
 EMV 18% 35% 24% 24% 18% 35% 47% 23% 46% 31% No 
 GMV 8% 62% 15% 15% 8% 62% 30% 8% 62% 30% Yes 
 MDP 15% 55% 15% 15% 15% 55% 30% 15% 55% 30% Yes 
 RP 16% 48% 18% 18% 16% 48% 36% 19% 51% 29% No 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Redundancy invariant: Finally, we can introduce to the Stock, Bond and Credit portfolio a “Redundant asset” which is 
just a weighted combination of in the Stock, Bond and Credit assets with 60%, 30%, 10% weights. Table 29 below 
summarizes the portfolio weights for different allocation methods. Similar to the “duplication invariant” case, we find that 
MVO, GMV and MDP are redundancy invariant, while EW, EMV and RP are not.  

38 Although this simplified case rarely happens in empirical portfolio management processes, the case of duplicate assets could happen 
when the underlying universe is large and different benchmarks for the same asset/factor are used. 
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Table 29: Portfolio weight before and after introducing a “redundant” asset with 60%, 30%, and 10% allocation to Stocks, Bonds, and Credit, 
respectively 

 Weights in “New” Assets New Effective Weights Original Weights Redundancy 
Invariant? 

 Stock Bond Credit 60/30/10 Stock Bond Credit Stock Bond Credit 
 EW 25% 25% 25% 25% 40% 33% 28% 33% 33% 33% No 
 MVO 7% 50% 35% 7% 11% 52% 36% 11% 52% 36% Yes 
 EMV 17% 34% 22% 27% 33% 42% 25% 23% 46% 31% No 
 GMV 0% 58% 29% 13% 8% 62% 30% 8% 62% 30% Yes 
 MDP 15% 55% 30% 0% 15% 55% 30% 15% 55% 30% Yes 
 RP 13% 44% 25% 18% 24% 50% 26% 19% 51% 29% No 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

One can further show that show that only MVO and MDP are invariant to a combination of leverage and redundancy 
changes, while the others are not.  

Table 30 below summarizes basic portfolio invariant properties for common allocation methods. Note that the conclusion 
for more general RB methods has the same invariance properties as the RP method. 

Table 30: Summary of invariant properties for portfolio allocation methods 

 
Leverage 
Invariant? 

Duplication 
Invariant? 

Redundancy 
Invariant? 

Leverage+ 
Redundancy 

Invariant? 
EW No No No No 
MVO Yes Yes Yes Yes 
EMV Yes No No No 
GMV No Yes Yes No 
MDP Yes Yes Yes Yes 
RP Yes No No No 
RB Yes No No No 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
The fact that the simple EW) model is neither leverage-invariant nor redundancy-invariant makes it potentially problematic 
for the use on new and untested risk factors. Later in this chapter we will see that the EW model indeed had the worst 
overall performance when applied to a realistic example of alternative risk factors.  

Moreover, despite the broad use of EMV and RP weights in the asset management industry, these two methods are not 
invariant to an introduction of a duplicate asset or redundant assets. Special attention should be paid when using these 
models to avoid large risk allocation to assets with similar factor risk (e.g. overweight on Carry strategies that may be 
highly correlated). One approach would be to construct a portfolio of “non-degenerate” assets39 by using dimension 
reduction techniques such as principal component analysis (PCA), independent component analysis (ICA), variable 
selection, boosting etc (see Appendix for technical details on PCA and ICA).  

We also found that the GMV portfolio is not invariant to leverage. This can create instability, as many financial products 
incorporate a certain degree of leverage. A good practice would be to apply GMV on a set of assets with similar level of 
volatilities. For assets with dramatically different volatilities, one could pre-process factors to create equal volatility factors 
before applying GMV (see the next section for the time-series method of volatility targeting). 

  

39 In Statistics, a "degenerate” set of assets is also called “multicollinearity”.  
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Time Series Risk Allocation - Theory 
 
In the previous section, we discussed the allocation of risk across different assets in a portfolio. These cross-sectional 
allocations are repeated periodically (e.g. monthly, quarterly rebalances) as the underlying asset/factor performance 
diverges, and volatility, correlation and performance estimates change. In addition to cross sectional risk allocation, 
investors can continuously manage the overall portfolio risk by allocating between the factor portfolio and the risk-free 
asset (e.g. cash or short term bills).  

Time-series allocation to the risk-free asset is based on specific prescription for overall portfolio risk. For example, one of 
the popular methods is to target a constant level of volatility (e.g., 5%, 10% etc. annualized volatility). Volatility targeting 
techniques essentially reduce the risky portfolio position size during volatile periods and leverages up when portfolio 
volatility is lower than the target. Volatility targeting delivered strong performance during the last financial crisis and has 
become a popular investment style since (see Investment Strategies No 51: Volatility signals for asset allocation).  

Time series risk methods can also be designed to provide upside exposure to a risky portfolio, but protect a specified level 
of invested assets on the downside. A popular method is Constant Proportion Portfolio Insurance (CPPI). The key 
parameter for CPPI is the asset floor. As the value of portfolio increases above the floor, the investor increases exposure to 
the risky portfolio, and when the value of portfolio approaches the floor, the weight of risk-free asset is increased to 100%. 
In this respect, CPPI acts similar to a stop-loss strategy (which can be achieved by a specific selection of CPPI 
parameters). 

Volatility targeting and CPPI-based risk methods are excellent tools to manage downside portfolio risk. One potential 
challenge these methods face is a risk of tail events. For instance, both volatility targeting and CPPI methods require de-
levering when the volatility of assets increases and performance deteriorates. However, if this occurs extremely fast – for 
instance in one or two days – these strategies will not be able to rebalance quickly enough (e.g. if the strategy rebalances 
weekly or monthly). For this reason these risk methods may underperform theoretical expectation during extreme tail 
events. This ‘gap’ risk can also be compared to the failure of a stop-loss strategy, in case of a large overnight drop in asset 
price. Another challenge is that these strategies tend to buy asset when it is rising and sell it when it is falling i.e. they are 
‘short gamma’. This can work well in a trending market, but will not be optimal in volatile, mean reverting markets. 

Investors can eliminate the tail risk of volatility targeting and CPPI by implementing option based risk management. For 
instance, an investor that is long a put option on an asset or a portfolio is guaranteed a floor for the asset value. In effect, 
the put option guarantees a CPPI-type floor for the asset value. In option language, the investor is long ‘gamma’ or 
protection for large moves in the asset. The advantage of options does come at the cost – options are bought for a premium 
that decays in time. Option strategies can be designed to allocate between risky and risk-less assets and achieve virtually 
any risk/reward profile. A popular cost-less strategy for managing portfolio risk is a ‘zero cost collar’, where an investor 
buys a put option and sells a call option (for net zero premium) and eliminates both left and right tails of the return 
distribution. 

Finally, not all time-series risk methods are based on simple rules to target constant volatility or protect principal. Many 
investors are allocating risk based on market timing signals. With different level of success, market timing models have 
been designed based on macro data such as the OECD leading indicator, volatility skew and term structure, and are often 
defined as multi-factor signals (e.g. see Investment Strategies No. 102: Equity Risk Timing). 

Table 31 below summarizes common time series portfolio risk allocation methods, their objectives and theoretical 
conditions under which each approach is optimal. For each of the methods discussed, we will provide a technical 
description in a series of Mathematical Boxes (readers not interested in technical aspects, can follow the main text and skip 
these boxes). 
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Table 31: Objectives and ex-ante Optimality Conditions for Various Time Series Portfolio Risk Allocation Methodologies 

Portfolio Risk Method Object to Achieve Risk Method is Optimal When 

Volatility Targeting Constant portfolio volatility Sharpe ratio is Time Invariant 

Constant Proportional Portfolio 
Insurance (CPPI) 

Investing a constant proportion of cushion into risky 
asset 

Risk aversion parameter is proportional to the ratio of cushion to 
portfolio value 

Constant Weight Constant weight in the risky asset Risk aversion parameter is constant 

Option-based Insurance 
Strategies (OBPI) Dynamically replicate protective put strategy Risk aversion parameter of the risky portfolio is proportional to a 

time-varying factor depending on risky asset value 

Generic Time-Invariant 
Portfolio Protection (TIPP) 

Risky asset weight is a function of the current risky 
asset value 

Risk aversion parameter of the risky portfolio is proportional to a 
time-varying factor depending on risky asset value 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 37 below describes one example of a decision process for selecting a time series model. The investor selects a risk 
method based on specific needs (e.g. stop loss, principal protection), and views on future risk and returns (e.g. assuming 
either momentum or mean-reversion patterns in the assets' returns): 

Figure 37: Time series portfolio risk allocation on portfolio level 
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
In the first Mathematical box of the section, we will show how to determine the dynamic allocation between the risky and 
risk-free asset that will outperform a simple buy and hold strategy.  
 

Mathematical Box (Theory behind Time Series Risk Methods) 

The derivation of dynamic weights that result in an optimal time-series allocation presented below is relevant for many 
time-series risk methods such as constant volatility, CPPI and stop loss. The derivation of optimal weights involves some 
basic findings in stochastic calculus which we will adopt as facts, rather than prove.  
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Let’s start with two assets: risky asset S representing our factor portfolio and risk-free asset B (e.g. cash or treasury bills). 
Asset prices are described with continuous time series40 : 

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑊𝑡 

𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡  

where 𝜇𝑡 and 𝜎𝑡 are the time-varying expected return and volatility for the risky asset. The risk-free asset has a constant 
return r, and 𝑊𝑡 is a random variable (Wiener process). Randomness of the expected returns for the risky asset are tied to 
𝑊𝑡.  

Following standard Stochastic Calculus, solutions for the price of risky asset S and risk free asset B at time t are  

𝑆𝑡 = 𝑆0exp �� (𝜇𝑠 − 𝜎𝑠2/2)𝑑𝑠
𝑡

0
+ � 𝜎𝑠𝑑𝑊𝑠

𝑡

0
�   and   𝐵𝑡 = 𝐵0exp(𝑟𝑡) 

Our time-series risk management process consists of assigning weight 𝑤t to the risky asset at time t. The price of a 
portfolio with 𝑤t of the risky asset and (1-𝑤t ) of the risk-free asset is then given by: 

𝑑𝑃𝑡/𝑃𝑡 = 𝑤𝑡𝑑𝑆𝑡/𝑆𝑡 + (1 − 𝑤𝑡)𝑑𝐵𝑡/𝐵𝑡 

It follows that  

𝑑𝑃𝑡
𝑃𝑡

= (𝑟 + (𝜇𝑡 − 𝑟)𝑤𝑡)𝑑𝑡 + 𝜎𝑡𝑤𝑡𝑑𝑊𝑡 

And the solution for the portfolio price at time t is 

𝑃𝑡 = 𝑃0exp �∫ (𝑟 + (𝜇𝑠 − 𝑟)𝑤𝑠 − 𝑤𝑠2𝜎𝑠2/2)𝑑𝑠𝑡
0 + ∫ 𝜎𝑠𝑤𝑠𝑑𝑊𝑠

𝑡
0 �.  

If our dynamically rebalanced strategy P is an optimal choice, it should outperform a strategy that simply holds asset S at 
the same level of risk. We can now derive the condition under which P will outperform S during time interval [0, T], while 
keeping the volatility of both constant. In other words, if we start with 𝑃0 = 𝑆0 and require that ∫ 𝜎𝑡2𝑤𝑡2𝑑𝑡

𝑇
0 = ∫ 𝜎𝑡2𝑑𝑡

𝑇
0 , we 

need to maximize the non-stochastic component of P 

𝑅(𝒘) = ∫ (𝑟 + (𝜇𝑠 − 𝑟)𝑤𝑠 − 𝑤𝑠2𝜎𝑠2/2)𝑑𝑠 = ∫ (𝑟 + (𝜇𝑠 − 𝑟)𝑤𝑠)𝑑𝑠 − ∫ 𝜎𝑡2𝑑𝑡
𝑇
0

𝑇
0

𝑇
0 . 

To maximize this function while keeping the same level of risk for P and S, we include the Lagrange multiplier 𝜆. 
Requiring the first order condition for the maximium (derivative with respect to the dynamic weight to be zero), we find 
the optimal dynamic weight 𝑤t 

Λ(𝒘) = ∫ (𝑟 + (𝜇𝑠 − 𝑟)𝑤𝑠)𝑑𝑠𝑇
0 − 𝜆

2
�∫ 𝜎𝑡2𝑤𝑡2𝑑𝑡

𝑇
0 − ∫ 𝜎𝑡2𝑑𝑡

𝑇
0 �  

∂Λ(𝒘)
∂𝑤𝑡

= 0 ⟺ 𝜇𝑡 − 𝑟 = 𝜆𝜎𝑡2𝑤𝑡 ⟺ 𝑤𝑡 =
𝜇𝑡 − 𝑟
𝜆𝜎𝑡2

 

 

40 The dynamics are described by continuous time stochastic differential equations for the convenience of expositions. One can think of 
𝑑𝑆𝑡/𝑆𝑡 as the continuous time version of returns. 
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Finally, we need to express the parameter 𝜆 as a function of the asset’s volatility and performance. This is done from the 
requirement on variance of P and S 

� 𝜎𝑡2𝑑𝑡
𝑇

0
= � 𝜎𝑡2𝑤𝑡2𝑑𝑡

𝑇

0
= �

(𝜇𝑡 − 𝑟)2

𝜆2𝜎𝑡2
𝑑𝑡

𝑇

0
 

This gives the value 𝜆 = �
∫

(𝜇𝑡−𝑟)2

𝜎𝑡
2 𝑑𝑡𝑇

0

∫ 𝜎𝑡
2𝑑𝑡𝑇

0
 and 𝑤𝑡 = 𝜇𝑡−𝑟

𝜆𝜎𝑡
2 , which defines the optimal strategy.  

Since above definition of 𝜆 depends on perfect foresight of 𝜇𝑡 and 𝜎𝑡2, we can estimate 𝜆 from e.g. historical performance 
of the portfolio (up to time t < T): 

𝜆𝑡 = �
∫

(𝜇𝑠 − 𝑟)2
𝜎𝑠2

𝑑𝑠𝑡
0

∫ 𝜎𝑠2𝑑𝑠
𝑡
0

 and 𝑤𝑡 =
𝜇𝑡 − 𝑟
𝜆𝑡𝜎𝑡2

 

 

Volatility Targeting 

Volatility Targeting is a risk management method in which an investor aims to maintain a constant level of volatility of a 
portfolio. Volatility targeting is achieved by selecting the weight of the risky asset to be inversely proportional to its 
expected realized volatility.  

In addition to providing exceptional control of portfolio risk (for which reason volatility targeting is also called ‘risk 
control’), the method may also outperform a long only portfolio on a risk adjusted basis. The reason for outperformance is 
often the negative correlation between volatility and asset performance. Volatility targeting increases leverage to the risky 
asset in rising markets when volatility is low, and de-levers in volatile markets when large draw-downs are more likely. 
De-levering during high volatility periods can also significantly reduce the tail risk of a volatility targeting strategy. This 
resulted in the outperformance of risk controlled portfolios during the recent financial crisis. For a detailed overview of 
volatility targeting strategies and their performance see Investment Strategies No 51: Volatility signals for asset allocation.  

Figure 38 and Figure 39 below show the historical outperformance of volatility-targeting strategies for the S&P 500 (S&P 
500T Index), US government bonds (JPMTUS Index), Global Commodities (SPGSCITR Index), EM Equities (MXEF 
Index), Global Credit (CSIYHYI Index) and G10 FX Carry (AIJPCF1U Index) during the period Jan 1990-Sep 2013. For 
simplicity, the weights of risky assets are calculated as the targeted volatility, divided by the trailing 60-day realized 
volatility.  

We find volatility-targeting generally outperforms long-only benchmarks given the average negative correlation between 
the volatility level and future asset performance, as shown in Figure 40 and Figure 41. Volatility targeting worked very 
well when applied to the S&P 500, Commodities and G10 Carry, which historically had higher volatility and larger draw-
downs (compared to bonds). For example, the equity strategy outperformed during the early ‘90s and during the crisis of 
2008-2009. The spike in outperformance in late 2008/early 2009 shows that volatility targeting managed to avoid most of 
equity drawdown as the market developed downward momentum. However, a portion of the outperformance was given 
back in the reversion rally started in the spring of 2009. In essence, volatility targeting includes a momentum bias towards 
asset performance, and will underperform during periods of market reversion.  Applying a volatility target on government 
bonds worked well in the 90s, but didn’t work as well since 2000 as the negative correlation between the level of volatility 
and forward return disappeared, likely due to the secular decline in bond yields that favored a long only bond position.  

The performance of Volatility targeting strategies heavily relies on the asset volatility forecast. Many investors use recent 
historical volatility – assuming that historical volatility is a good predictor of future realized volatility. Other popular 
approaches include the modification of simple historical volatility obtained from GARCH and Exponentially Weighted 
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Moving Average (EWMA) models, or the use of high frequency return data.  Alternative methods of forecasting volatility 
can include the use of multi-factor models or option implied volatility measures (see Investment Strategies No. 88: Signals 
from Options Markets, Investment Strategies No. 82: Equity Volatility Value – RV Model). See the Appendix for a review 
of popular volatility models. As with other time-series methods, volatility targeting is challenged during quick shifts in 
volatility regimes during which the model does not have enough time (rebalance frequency) to adjust risky asset weights. 
Investors need to find balance between responsiveness of the model that is achieved by more frequent rebalancing, and the 
transaction costs that frequent rebalancing incurs. 

 

Figure 38: Relative performance of volatility targeting strategies for 
US Equity, US Treasury and Commodities* 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * We use S&P 500 total return Index 
(S&P 500T Index), J.P. Morgan US Treasury Bond Index (JPMTUS Index) and S&P GSCI total 
return Commodity Index (SPGSCITR Index) as relevant benchmarks for volatility targeting. 

Figure 39:  Three-year correlation between 60-day trailing-volatility 
and 1-month forward performance 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * We use S&P 500 total return Index 
(S&P 500T Index), J.P. Morgan US Treasury Bond Index (JPMTUS Index) and S&P GSCI total 
return Commodity Index (SPGSCITR Index) as relevant benchmarks for volatility targeting. 

Figure 40: Relative performance of volatility targeting strategies for 
EM Equities, Global Credit and G10 Carry Strategy* 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * We use MXEF Index (MSCI 
Emerging Market Index), J.P. Morgan Global High Yield Bond Index (CSIYHYI Index) and J.P. 
Morgan G10 FX Carry Index (AIJPCF1U Index) as relevant benchmarks for volatility targeting.  

Figure 41:  Three-year correlation between 60-day trailing-volatility 
and 1-month forward performance 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * We use MXEF Index (MSCI 
Emerging Market Index), J.P. Morgan Global High Yield Bond Index (CSIYHYI Index) and J.P. 
Morgan G10 FX Carry Index (AIJPCF1U Index) as relevant benchmarks for volatility targeting. 
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In the Mathematical Box below, we show the theoretical conditions under which a volatility targeting strategy is an optimal 
choice of risk allocation. 

Mathematical Box (Volatility Targeting Strategy) 

A strategy that targets constant portfolio volatility 𝜎 = 𝑤𝑡𝜎𝑡 throughout time has risky asset weight  

𝑤𝑡 = 𝜎/𝜎𝑡. 

Using this weight in the expression for the time series and performance of a strategy with dynamically rebalanced weights 
of the risky and risk-free asset (previous mathematical box) gives for the performance of Volatility targeting strategy 

𝑑𝑃𝑡
𝑃𝑡

= �𝑟 +
𝜇𝑡 − 𝑟
𝜎𝑡

𝜎� 𝑑𝑡 + 𝜎𝑑𝑊𝑡 

𝑃𝑡 = 𝑃0exp �∫ �𝑟 + 𝜇𝑠−𝑟
𝜎𝑠

𝜎 − 𝜎2/2�𝑑𝑠𝑡
0 + 𝜎𝑊𝑡�. 

To determine when a volatility targeting strategy outperforms long only portfolio, we compare the expected return for a 
volatility targeting strategy and a long strategy under the condition that both strategies have the same volatility 
(performance is evaluated over time [0, T]).  

Similar to our result for a generic strategy (see previous Mathematical box), we start by allocating the same amount to the 
volatility target and long only strategies 𝑃0 = 𝑆0, and require that they have the same variance ∫ 𝜎𝑡2𝑤𝑡2𝑑𝑡

𝑇
0 = 𝑇𝜎2 =

∫ 𝜎𝑡2𝑑𝑡
𝑇
0 . Requiring that the volatility target strategy outperforms the long only strategy gives the following condition: 

� �𝑟 +
𝜇𝑡 − 𝑟
𝜎𝑡

𝜎 − 𝜎2/2� 𝑑𝑡
𝑇

0
≥ � (𝜇𝑡 − 𝜎𝑡2/2)𝑑𝑡

𝑇

0
⟺ �

𝜇𝑡 − 𝑟
𝜎𝑡

𝑑𝑡
𝑇

0
≥ �

𝜇𝑡 − 𝑟
𝜎

𝑑𝑡
𝑇

0
 

A sufficient condition for volatility targeting to outperform long only (i.e. generic condition we derived in previous 
Mathematical box) is  

𝑤𝑡 =
𝜎
𝜎𝑡

=
𝜇𝑡 − 𝑟
𝜆𝜎𝑡2

  or  
𝜇𝑡 − 𝑟
𝜎𝑡

= 𝜆𝜎 

When the risky portfolio has a constant (time-invariant) Sharpe ratio, a volatility-targeting strategy improves the risk-
adjusted return.  
 

 
Constant Proportional Portfolio Insurance (CPPI) 

CPPI is a strategy designed to prevent the portfolio value from dropping below a pre-determined floor. The strategy 
achieves that goal by changing the allocation to the risky asset – increasing it when the performance of the asset is positive, 
and decreasing exposure to the risky asset when the performance of the risky asset declines. When the level of assets 
reaches the pre-determined floor, the allocation is entirely to the risk-free asset and it does not change further. This is often 
called a ‘cash lock’ or CPPI defeasance.  

The CPPI strategy is defined with the level of the Cushion (𝐶 = 𝑃 − 𝐵) which is the difference between the portfolio value 
(𝑃) and the pre-determined floor (𝐵), and with the leverage Multiplier 𝑀 (positive number greater than 1). The dollar 
allocation to the risky asset is given by the Multiplier times the Cushion (𝑀 × 𝐶). For instance, lets examine a CPPI for 
which the value of the portfolio 𝑃 is $100, the portfolio floor 𝐵 = $80, and the multiplier 𝑀 = 4. The initial allocation to 
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the risky asset is 4 × ($100 − $80) = $80, and the remaining $20 is allocated to risk free asset. If the portfolio level 
reaches $104 due to a 5% increase in risky asset, CPPI will allocate a larger amount, equal to $96 ($96 = 4 × ($104 −
$80)), to the risky asset.  If the value of CPPI portfolio drops from $100 to $80 (e.g. a 25% drop in value of risky asset), 
the CPPI Cushion drops to zero and allocation to risky asset becomes zero (the entire portfolio is allocated to the risk free 
asset). Figure 42 below illustrates an example of the CPPI Cushion, Floor and Allocation to the Risky Asset on a US$1 
initial investment (we assumed the bond floor grows at a positive risk-free rate):  

Figure 42: Diagram on CPPI Cushion, Floor and Allocation to Risky Asset on a US$1 initial investment 

 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

In this respect, CPPI performs similar to a portfolio of a risk free asset (Bond) B, and an upside call option on the risky 
asset. However, there are several important differences between CPPI and a bond plus call option. The first one is the 
risk of a quick drop in portfolio value, during which CPPI may not be able to reduce exposure to the risky asset. This is 
called the ‘gap risk’. Let’s take our previous example of a $100 CPPI portfolio, floor of $80 and Multiplier of 4. If the $80 
in the risky asset declines by more than $20=$80/4 before CPPI manages to rebalance, the value of the CPPI strategy will 
gap through the floor value. More generally, the gap return of a risky asset for which the CPPI value will fall below the 
floor is given as 1 divided by the multiplier (in our case that is 1/4, or 25% drop in the risky asset between rebalances). 
Additionally, once the portfolio value reaches the floor, CPPI assets will stay invested in the risk free asset and there would 
be no future exposure to the risky asset even if it subsequently recovers (in that sense, the analogy between CPPI and a call 
option would be closer to an in-the-money call option that knocks out at its strike level).  

Without a cap/floor on weights, CPPI will increase risky positions when the risky asset sees positive momentum and 
decrease the risky position when the risky asset sees negative momentum. As a result, CPPI will behave like a momentum 
strategy in a trending market (similar to a volatility targeting strategy). The performance of a CPPI Strategy relative to a 
long-only benchmark depends on the relationship between the risky asset weight and asset performance – it outperforms 
when the asset is trending upward (downward) and CPPI puts more (less) than 100% weight in the asset. Moreover, a CPPI 
Strategy is inherently short gamma, as during every rebalance it buys the risky asset if it the asset had a positive return 
(from the previous rebalance) and sells the asset if it had a negative return. For this reason CPPI will generally perform 
poorly in a volatile mean reverting market as the strategy keeps on buying high and selling low.  

For example, Figure 43-Figure 46 illustrate the performance of CPPI strategies (with daily re-balancing) on the S&P 500 
and Gold for the period 2006-2007 when both assets were in structural bull markets with periodic draw-downs. We looked 
at cases with a constant multiplier of 5 with 70% and 100% principal protection respectively over a two-year time horizon 
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(position initiated on 30 Dec 2005 and matures on 31 Dec 2007). We use the 2-year constant maturity Treasury bond yield 
as the yield on the risk-free asset (4.4% at the end of 2005, and we assumed linear yield curve roll downs). With 70% 
principal protection (Figure 43 and Figure 44), CPPI on the S&P 500  and Gold behaved like a leveraged position on the 
assets and outperformed when the assets exhibited positive momentum (Jun 06-May 07 for S&P 500; Mar 06-April 06 and 
Aug-Dec 07 for Gold). Both Strategies underperformed during range-bound or declining markets (Jun 07-Dec 07 for S&P 
500; May 06-Aug 07 for Gold). On the other hand, with 100% principal protection, both CPPI strategies were conservative 
in allocating to the risky assets (S&P 500 and Gold respectively) and hence largely underperformed during the 2006-07 
bull-run (Figure 45 and Figure 46). 

 

Figure 43: 2-year CPPI on S&P 500 during 2006-07 for M = 5 with 70% 
principal protection 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 44:   2-year CPPI on Gold during 2006-07 for M = 5 with 70% 
principal protection 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 45: 2-year CPPI on S&P 500 during 2006-07 for M = 5 with 100% 
principal protection 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 46: 2-year CPPI on Gold during 2006-07 for M = 5 with 100% 
principal protection 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Despite drawbacks (‘gap risk’, defeasance risk), an advantage of CPPI is that it can provide reasonably good downside 
protection at a low cost - the only costs of CPPI are related to rebalancing transactions and borrow costs when the model 
prescribes leverage. While option strategies do have better tail risk properties and allow performance recovery (after hitting 
the floor), options also require spending an upfront premium. Option premium can be viewed as the cost of gap and 
defeasance risk.  

Closely related to CPPI is a simple Stop-loss strategy. Stop-loss is one of the most utilized risk management techniques. 
The portfolio is fully invested, and instantaneously switches to 100% in the risk-free asset when the portfolio value reaches 
the stop-loss floor. Theoretically, a stop loss strategy can be approximated by a CPPI strategy in which the multiplier is 
given by 𝑃/𝐶 (for 𝑃/𝐶 > 0), and zero otherwise (i.e. Max(𝑃/𝐶, 0)). Holding a put option provides a similar payoff to a 
Stop-loss strategy; however, unlike a put option, Stop-loss is prone to gap risk. The asset price may jump before stop-loss 
can manage to sell the asset. A put option ‘guarantees’ not only an exact stop loss, but also re-purchasing the asset when 
the price increases above the stop-loss limit. This ‘long gamma’ exposure of put options is paid via option premium decay. 

Mathematical Box (Constant Proportional Portfolio Insurance) 

Portfolio Cushion is defined as a difference between the portfolio value and the floor:  𝐶𝑡 = 𝑃𝑡 − 𝐵𝑡. A strategy that 
invests a constant proportion 𝑀 (𝑀 >  1) of the cushion to the risky asset is called a Constant Proportional Portfolio 
Insurance (CPPI) strategy. In other words, a CPPI strategy allocates 

𝑤𝑡 =
𝑀𝐶𝑡
𝑃𝑡

 

to the risky asset and the rest (1 − 𝑤𝑡) to risk-free asset. Time series for the CPPI portfolio P and Cushion C are given by 

𝑑𝑃𝑡 = 𝑃𝑡 �𝑤𝑡
𝑑𝑆𝑡
𝑆𝑡

+ (1 − 𝑤𝑡)
𝑑𝐵𝑡
𝐵𝑡

� = 𝑀𝐶𝑡
𝑑𝑆𝑡
𝑆𝑡

+ (𝑃𝑡 − 𝑀𝐶𝑡)
𝑑𝐵𝑡
𝐵𝑡

 

and 

𝑑𝐶𝑡
𝐶𝑡

=
𝑑(𝑃𝑡 − 𝐵𝑡)

𝐶𝑡
= 𝑀

𝑑𝑆𝑡
𝑆𝑡

+ (1 −𝑀)
𝑑𝐵𝑡
𝐵𝑡

= �𝑟 + 𝑀(𝜇𝑡 − 𝑟)�𝑑𝑡 + 𝑀𝜎𝑡𝑑𝑊𝑡 

Following Itô’s formula, we can calculate the value of Cushion 

𝐶𝑡 = 𝐶0exp �� �𝑟 + 𝑀(𝜇𝑠 − 𝑟) −
1
2
𝑀2𝜎𝑠2� 𝑑𝑠

𝑡

0
+ 𝑀� 𝜎𝑠𝑑𝑊𝑠

𝑡

0
� 

Since 𝑆𝑡 = 𝑆0exp �∫ (𝜇𝑠 − 𝜎𝑠2/2)𝑑𝑠𝑡
0 + ∫ 𝜎𝑠𝑑𝑊𝑠

𝑡
0 �, the Cushion can also be written as (by substituting ∫ 𝜎𝑠𝑑𝑊𝑠

𝑡
0 ): 

 

𝐶𝑡 = 𝐶0exp �� (1 −𝑀) �𝑟 +
1
2
𝑀𝜎𝑠2�𝑑𝑠

𝑡

0
� �
𝑆𝑡
𝑆0
�
𝑀

 

A condition for the CPPI strategy to generate better risk-adjusted return than a long only portfolio is expressed in terms of 
portfolio risky allocation 

𝑤𝑡 =
𝑀𝐶𝑡
𝑃𝑡

=
𝜇𝑡 − 𝑟
𝜆𝜎𝑡2

  

A CPPI strategy implicitly assumes “momentum” in portfolio performance – the higher the Cushion, the higher the 
allocation to the risky asset.  
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Constant weight strategy  

A constant weight strategy allocates a fixed weight to risk free and risky assets. If the risky asset performs well, it is sold 
and the allocation to the risk-free asset is increased, and if the risky asset underperforms, leverage is increased. A constant 
weight approach will outperform when the performance of the risky asset is mean-reverting, and the frequency of mean 
reversion roughly coincides with the re-balancing schedule. A strategy that invests a constant proportion of the portfolio to 
the risky asset: 𝑤𝑡 = 𝑤 corresponds to a CPPI with zero floor 𝐵 = 0 and the leverage factor  𝑀 = 𝑤 (note that in contrast 
to CPPI, leverage 𝑤 is smaller than 1). When the value of the risky asset/portfolio is rising, a CPPI strategy (with leverage 
greater than 1 and non-zero floor) increases portfolio risk. On the other hand, the constant mix strategy acts in a contrarian 
fashion by selling the risky asset to maintain its relative weight to the risk-free asset. According to our theoretical 
conditions for optimality of a strategy with dynamic weights (the first Mathematical box in this section), a constant weight 
strategy will be an optimal choice when the portfolio Sharpe ratio is proportional to the portfolio’s volatility. 𝑤𝑡 = 𝑤 =
(𝜇𝑡 − 𝑟) 𝜆𝜎𝑡2⁄ . Intuitively this implies mean reversion of asset prices: following the asset price declines and increases in 
volatility, one would expect reversion and a higher Sharpe ratio. 
 
 

Option-based Portfolio Insurance (OBPI) 

Based on the large notional size of derivative markets (~$36T in options outstanding), options are likely the most popular 
tool used to manage portfolio risk nowadays. Exchange listed options trade on many individual assets and asset 
benchmarks. Additionally, investors are increasingly using over the counter options, that can provide protection for any 
custom portfolio including options on alternative risk factors.  

The simplest option strategy is buying a put as an overlay to a risky portfolio. This is equivalent to buying a call option on 
a portfolio and holding the value of the portfolio in the risk free asset. A protective put strategy meets the same goal as 
CPPI and Stop-loss (protecting the floor), but without exposing the portfolio to gap risk or defeasance, and without the 
need for rebalancing. Additionally, a protective put strategy has long gamma exposure that provides positive portfolio 
convexity, and long vega exposure that can provide additional protection during the asset price decline. A drawback of a 
simple protective put strategy is that the price of options often trades at a premium. In fact, in our discussion of volatility 
risk factors, we have shown that systematic selling of options across markets often generates positive premium. 

Given the average richness of put options, investors often employ ‘cheaper’ option strategies such as put-spreads, and 
collars. In a put-spread strategy, a portfolio floor is guaranteed only within a range of prices. This is achieved by buying a 
higher strike put option and selling a lower strike put option. Given the typical richness of implied volatility skew, put-
spread strategies provide a good alternative to protective puts. Collaring a position involves buying a put option and selling 
a call option. The portfolio floor is protected with a put, but the upside is capped at the strike of the call option that is sold. 
An advantage of collars is that the investor is often not outright buying volatility, and hence can significantly reduce the 
cost of risk management. 

More generally, an investor can tailor any risk-reward profile via use of options. Protection or leverage can be obtained in 
any range of prices and over many different time horizons. Other popular risk reduction option strategies include: put-
spread collars, put calendar spreads, butterflies, put-ratios, put-ladders, covered-calls, and others.  

Similar to CPPI, volatility target and constant weight methods, deciding on a particular option strategy depends on the 
investor’s view on momentum and mean reversion in the market. Additionally, the choice of option strategy depends on the 
assessment of the fair value for volatility. The volatility view is often conditional on the time horizon (implied volatility 
term structure) and the likely price range of the asset (implied volatility skew). 

Options and other derivative products are also used for portfolio tail risk hedging. Historically, buying far-out of the money 
put options was one of the most common tail risk hedges. Given the richness of implied volatility, and implied volatility 
skew, investors are often looking for alternative products to manage portfolio tail risk. Some alternatives include volatility 
products based on VIX futures, and VIX option strategies, which can also be effective tools to manage portfolio tail risk. 
As a first step in tail hedge design, the investor needs to define the tail risk scenario that is being hedged. The second step 
is to find the cheapest derivative product that can achieve that goal. Relative value between tail hedges may be due to 
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market mispricing (value opportunity), but can also be due to tracking risk of the instrument relative to the hedged asset. 
Instead of looking for the cheapest instrument that can achieve the hedging goal, an investor can also define the premium 
they are willing to spend on tail hedges (e.g. 0.5% of the portfolio per annum), and then look for the products that provide 
the most effective tail protection within this budget.  

When tail hedging a portfolio with options, an investor should also examine the correlations of their portfolio assets under 
different tail scenarios. For instance, in a case of moderate economic downturn, the correlation between bonds and equities 
is expected to be negative. An investor holding a portfolio of bonds and stocks likely needs to hedge only equity tail risk in 
this scenario. In the scenario of a severe crisis leading to bond-equity contagion (e.g. foreign investors abandoning USD 
assets), both equity and bonds are expected to suffer losses, and the investor should buy protection on both asset classes 
(e.g. S&P 500 out of the money puts, and out of the money Swaptions on the 10-year rate). 
 
 

Generic Time-Invariant Portfolio Protection (TIPP) 

For readers interested in the theory of time-series risk methods, it may be worth noting that the concept of CPPI can be 
extended to a broader class of time-invariant portfolio insurance strategies. Brennan and Schwartz (1988) showed that   
under certain assumptions all of the discussed strategies (Volatility targeting, CPPI, Constant weight, and Option Based 
Portfolio insurance) are special cases of a more general Time-Invariant Portfolio Protection (TIPP) approach. 
 
 

Model-based Risk Timing Strategies 

An investor can also employ various fundamental and statistical models to decide on the allocation between risky and risk-
free assets. Similarly, timing models can be used to allocate between more risky and less risky factors (in this case, risk 
timing can also be also regarded as a part of cross-sectional risk management).  

A simple risk timing model would, for instance, rotate between risky factors and the risk-free asset based on a collection of 
market sentiment indicators. Models that have many free parameters are often at risk of implicit or explicit in-sample 
biases ("over-fitting") and may have poor out-of-sample performance. Hence, in constructing a model-based risk allocation 
strategy, one should balance between considerations such as the economic rationale for the signal, historical performance, 
and model simplicity. For an overview of specific risk timing models in equities, see our report Investment Strategies No. 
102: Equity Risk Timing.  

As an illustration of a risk timing strategy, we create a simple model aimed to enhance the performance of G10 carry 
strategies. The model is based on the historical 1-month trailing volatility of the S&P 500. The model allocates risk to a 
G10 carry strategy, and rotates to US Treasury bonds during market crises. The signal for a market crisis is triggered if the 
trailing 1-month average realized volatility on the S&P 500 is greater than 30% or the z-score of realized volatility is 
greater than 2. In other words, a crisis mode is defined when either the absolute level of S&P 500 volatility is high or the 
volatility significantly increased. Figure 47 below shows the historical performance of the “Risk Timed G10 Carry 
Strategy” compared with the G10 Carry, and Table 32 summarizes related performance-risk analytics.  

As is shown in Table 32, the risk-timed G10 Carry strategy had a higher annualized excess return, higher Sharpe ratio and 
smaller maximum drawdown than the G10 Carry strategy. Significant outperformance of the risk-timed strategy was 
achieved during crisis times (1998-1999 and 2008-2009).  An investor can certainly question how robust is our selection of 
a 30% volatility level and z-score of 2, and if the same choice will continue to perform well in the future. Despite these 
concerns, we note that the z-score was used as an out of sample signal, and the portfolio was rebalanced only once a month.  
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Another example of a volatility-based market timing signal is embedded in the J.P. Morgan Macro-hedge family of indices. 
These indices remove risk (remove short S&P 500 volatility exposure) when the term structure of the S&P 500 implied 
volatility inverts. Historically, inversion of the implied volatility term structure occurred (and lasted for several days) before 
all major market selloffs. This, however, does not guarantee the same relationship between term structure and market 
behavior in the future. 

From a purely theoretical angle, we have shown (see Mathematical box) that the optimal portfolio leverage of a timing 
strategy corresponds to the ex-ante factor of risk aversion. If a market timing signal can consistently provide such foresight, 
a model-based time series risk allocation would deliver optimal risk adjusted returns. 

 
  

Table 32: Performance-Risk Summaries 
 

 G10 
Carry 

US 
Treasury  

Risk Timed 
G10 Carry 

Average (%) 5.8 2.7 7.0 
CAGR (%) 5.6 2.6 6.9 
STDev (%) 8.7 4.8 7.7 
MaxDD (%) -31.4 -9.4 -19.6 
MaxDDur (in yrs) 5.5 5.0 3.3 
Sharpe Ratio 0.67 0.56 0.90 
Sortino Ratio 0.97 0.90 1.38 
Calmar Ratio 0.61 0.91 0.86 
Pain Ratio 1.25 0.96 2.15 
Reward to 95VaR 0.12 0.11 0.16 
Reward to 95CVaR 0.08 0.08 0.11 
Hit Rate 0.64 0.57 0.65 
Gain to Pain 1.67 1.52 1.96 
Skewness -0.92 -0.05 -0.78 
Kurtosis 2.67 0.71 1.73 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Statistics are calculated during 
Jan 1986 – Dec 2012.  

Figure 47: Performance Comparison between G10 Carry and a Risk-
Timed G10 Carry Strategy 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  
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Practical Application of Risk Factor Portfolios 
 
After introducing the theory behind portfolio construction and risk management, we will apply these methods on an actual 
portfolio of cross-asset risk factors. Analyzing the historical performance of each of the methods can give further insights 
into their benefits and drawbacks, as well as model performance under different macro economic and market regimes. 

In particular, we will apply cross-sectional risk management models on the portfolio of 12 traditional and alternative risk 
factors introduced in the Chapter on the classification of risk factors. We selected 3 risk factors from each of the main 
factor styles: Traditional, Value, Momentum, and Carry. We have omitted the volatility factors, as our backtest goes over 
40 years back (from Jan 1972), and derivative based risk factors generally have much shorter time history available (e.g. 
the first listed option on equity indices started trading in 1983).  Within each of the factor styles, we have selected 
examples from different traditional asset classes:  

• Traditional Beta – Equities: S&P 500 total return index minus 1-month cash yield; 

• Traditional Beta - Rates and Credit: Total return of a hypothetical monthly rolling position in 5-year, 10-year and 
30-year constant maturity Treasury bonds minus 1-month cash yield; 

• Traditional Beta - Commodities: Excess return of the S&P GSCI Commodities Index; 

• Carry - Rates and Credit: Excess return of a monthly rolling a long position in the top-three 10-year government 
bonds with the steepest yield curves and a short position in the bottom-three 10-year government bonds;  

• Carry - Currencies: Excess return of a monthly rolling a long position in the top-three yielding currencies and a short 
position in the bottom-three yielding currencies;  

• Carry - Commodities: Excess return of a monthly rolling long position in the top-three backwardated commodity 
futures and a short position in the bottom-three backwardated (or most contangoed) commodity futures; 

• Momentum - Equities: Excess return of a monthly rolling long position in the top-three equity indices with the highest 
past 12 month returns and a short position in the bottom-three equities indices with lowest past 12 month returns; 

• Momentum - Rates and Credit: Excess return of a monthly rolling long position in the top-three 10-year government 
bonds with the highest past 12 month returns and a short position in the bottom-three 10-year government bonds with 
lowest past 12 month returns; 

• Momentum - Commodities: Excess return of a monthly rolling long position in the three commodity futures with the 
highest past 12 month returns and a short position in the three commodity futures with lowest past 12 month returns; 

• Value - Equities: Fama-French (1993) HML value factor; 

• Value - Rates and Credit: Excess return of a monthly rolling long position in the top-three 10-year government bonds 
with the largest increase in 10-year yields during the past three years and a short position in the bottom-three 10-year 
government bonds with smallest increase (or largest decrease) in 10-year yields during the past three years; 

• Value – Commodities: Excess return of a monthly rolling long position in the top-three commodity futures with the 
lowest valuation and a short position in the bottom-three commodity futures with the highest valuation, where valuation 
is defined as the ratio of average price over the past five years to the current price. 

 
Before we analyze the performance of allocation methods under different macro regimes, we should first note that the past 
two decades exhibited specific secular trends in inflation, stock and bond performance that could have influenced the 
performance of different risk models. Figure 48 below shows inflation levels, and average Equity and Government bond 
yields over the past 100 years.  For instance, Treasury bonds had strong performance in recent decades, because low and 
stable inflation as well as accommodative central bank policies helped a secular decline in bond yields. Specifically, 
inflation was relatively low and stable over the past 20 years (compared to the most of the 20th century). Hence, any 
investment strategy with strategic tilts towards low risk assets would have overweight bonds, likely improving risk adjusted 
returns (such as Risk Parity, Equal Marginal Volatility). 
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Equity yields declined during 1982-2000, and then rose sharply into the financial crisis of 2008.  Hence, any investment 
strategy that would have overweighed equities, but managed to avoid the 2008 drawdown, would have shown better risk 
adjusted returns. 

Figure 48: Long-term US Equity earnings yield, Treasury bond yields and Inflation (%)

 
Source: Robert Shiller, J.P. Morgan Quantitative and Derivatives Strategy. * Average Equity yield is calculated as the inverse of CAPE10 proposed by Robert Shiller.  

We will start with providing simple performance and correlation properties of individual factors in our 12-asset portfolio. 
(For a more detailed analysis of factors in different market regimes, see the Section on Classification of Risk Factors). 
Table 33 highlights basic risk-performance analytics for our factor selection. 

Table 33: Performance-Risk metrics for popular portfolio allocation methods during 1972-2012 

 Trad’l-
Equity 

Trad’l -
Bond 

Trad’l -
Comdty 

Carry-
Bond 

Carry-
Curncy 

Carry- 
Comdty 

Mom’m- 
Equity 

Mom’m-
Bond 

Mom’m- 
Comdty 

Value- 
Equity 

Value-
Bond 

Value- 
Comdty 

Average (%) 3.9 9.2 5.3 2.5 5.7 4.4 6.2 3.7 8.2 4.9 4.1 2.7 
CAGR (%) 2.7 9.3 3.3 2.3 5.5 .6 4.7 3.5 7.2 4.4 4.0 1.5 
STDev (%) 15.6 7.3 20.3 7.4 7.9 12.7 18.1 6.5 15.4 10.5 7.4 15.1 
MaxDD (%) -59.0 -17.0 -67.8 -31.8 -31.4 -36.3 -37.5 -23.5 -33.3 -44.6 -21.5 -59.0 
MaxDDur (in yrs) 14.6 2.0 13.5 27.0 5.5 16.8 14.4 10.4 5.7 5.8 23.2 23.4 
Sharpe Ratio 0.25 1.26 0.26 0.34 0.72 0.34 0.34 0.56 0.53 0.46 0.56 0.18 
Sortino Ratio 0.35 2.58 0.39 0.60 1.08 0.53 0.54 0.88 0.86 0.72 1.13 0.25 
Calmar Ratio 0.24 1.33 0.24 0.38 0.60 0.19 0.35 0.80 0.34 0.27 0.71 0.12 
Skewness -0.46 0.64 0.05 2.27 -0.75 0.04 0.47 -0.04 0.01 -0.01 2.59 -0.26 
Kurtosis 1.87 3.87 2.37 28.36 2.80 0.83 6.02 2.80 1.36 2.37 21.12 1.09 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

The factor correlation matrix is shown in Table 34 below, with the statistics below diagonal showing values for the full 
sample period and above the diagonal for market crises. The average correlation of a factor with all other factors during the 

-20

-15

-10

-5

0

5

10

15

20

25

30

19
00

19
03

19
06

19
09

19
12

19
15

19
18

19
21

19
24

19
27

19
30

19
33

19
36

19
39

19
42

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

Average Equity Yield 10 year US Treasury yield CPI Inflation

101 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

full sample period (Jan 1972-Dec 2012), five episodes of major crises41, as well as the latest global financial crisis (Aug 
2007-Mar 2009) is shown at the bottom of the table. 

Table 34: Correlation matrix during 1972-2012 using monthly excess returns  

  
Trad’l-
Equity 

Trad’l -
Bond 

Trad’l- 
Comdty 

Carry-
Bond 

Carry-
Curncy 

Carry- 
Comdty 

Mom’m- 
Equity 

Mom’m-
Bond 

Mom’m- 
Comdty 

Value- 
Equity 

Value-
Bond 

Value- 
Comdty 

Trad’l-Equity   33 18 16 54 9 14 26 -22 -8 -14 7 
Trad’l -Bond 13   28 -6 -4 -5 7 48 -1 -7 -15 -1 
Trad’l -Comdty 10 -18 20 10 41 26 1 -11 35 18 -8 -24 

Carry-Bond -6 -15 -7   28 -3 -6 -20 -7 -5 13 -2 
Carry-Curncy 22 -14 8 11   13 20 -1 1 14 -4 0 

Carry- Comdty -3 -5 2 -1 2   13 -13 18 14 -11 -50 

Mom’m- Equity -12 3 1 -2 5 12   24 9 -6 -33 14 
Mom’m-Bond 8 12 -9 16 -1 -2 0   15 10 -26 15 

Mom’m- Comdty -2 6 3 -1 2 27 9 7   -6 -15 -46 

Value- Equity -29 3 -3 6 2 -2 -7 3 0   4 -9 
Value-Bond -9 -7 3 19 1 -10 -10 -23 -5 7   5 

Value- Comdty 6 -9 -7 4 5 -34 -8 2 -58 -5 2   

 
            

Full Sample Avg 0 -3 3 3 5 0 0 2 0 -2 -3 -11 
Crisis Average 12 2 7 2 15 1 5 6 -2 2 -9 -8 

Avg During GFC 20 -7 17 9 22 7 0 -7 -3 4 -17 -15 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Lower triangular statistics are the all-sample pair-wise correlation and upper triangular are the correlation statistics during crisis 
periods.  

For instance, Currency Carry and Commodity Beta had the highest average correlation with other factors, and the average 
correlation increased during crisis periods. On the other hand, the Treasury bond beta and Value strategies across asset 
classes had the lowest average correlation both in the full sample and during market crises. 

For these twelve risk factor benchmarks (three benchmarks in each of the four systematic factor styles among Traditional, 
Carry, Momentum, and Value), we tested the following risk methodologies: 

1. Equal weighted portfolio (EW), 

2. Equal marginal volatility portfolio (EMV), 

3. Mean-Variance Optimized portfolio with expected returns estimated from trailing average returns (MVO), 

4. Global Minimum Variance portfolio (GMV), 

5. Most Diversified Portfolio (MDP), 

6. Risk Parity Portfolio (RP),  

7. Risk Budgeting portfolio with active risk view based on momentum42 (RB). 

8. Black-Litterman portfolio with ex-ante equilibrium set at the risk parity portfolio and an active view based on 
momentum43 (BL);  

41 Crisis periods we include for the correlation calculation are Oct 1973—Mar 1974 (OPEC Oil Crisis), Aug 1982 – Oct 1983 (Latin 
America debt crisis), July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and 
LTCM), and Aug 2007 - Mar 2009 (Global Financial Crisis or GFC). 
42 We dynamically allocate total risk contribution proportional to the trailing 12 month performance, floored at 5% and capped at 20%. 
43 For illustration purpose, we simply assume an investor view that the expected return difference between the best vs worst performance 
to be inline with the past 12 months, capped at 10% per month. 
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To calculate model weights, we used simple methods to estimate the marginal volatility, correlation matrix and expected 
returns. Specifically, we used trailing three-year monthly data to estimate asset volatilities and correlations and the average 
trailing 12-month return to estimate the expected future return. These simplistic volatility and correlation assumptions 
could be easily enhanced with e.g. a GARCH-based forecast. Interested readers could also refer to the Appendix for a brief 
review of forecasting models for expected return, volatility and correlation matrix.  
 

Evaluating Model Performance  
 
Figure 49 shows the best and Figure 50 the worst performing allocation methods according to different reward/risk metrics. 
In addition, we show the same performance rankings for the risk methods after applying a volatility targeting time series 
approach (8% constant volatility target).  

Our first finding is that no single allocation method was best under all market regimes. On average, simplistic allocation 
methods such as equal weight underperformed, and risk based methods such as Equal Marginal Volatility outperformed. 
However, the performance ranking of methods was largely dependent on market regimes such as the trending or reversal of 
assets (e.g. momentum favoring models such as risk parity), persistence or reversion of volatility (e.g. stable volatility and 
returns favoring MVO), and volatility anomaly (e.g. outperformance of low volatility assets favoring EMV). 

Some more specific observations about risk model performance are listed below: 

• MVO was consistently one of the top performing strategies in the 1980s and early 1990s. However, its performance 
was eroded afterwards, likely due to the inability to forecast returns based on historic performance (e.g. tech bubble 
burst). Specifically, MVO was the worst performing model in the last several years, likely due to the significant 
instability of correlations in 2009-2011, and asset performance divergence in 2011-2013.  

• Equal marginal volatility (EMW) was one of the top performing models since the mid-1990s. This is likely due to 
the negative correlation between volatility and performance. This relationship between volatility and performance is 
contemporaneous, but often has forward looking implications that low volatility assets continue to outperform high 
volatility assets (‘Volatility anomaly’). Additionally, EMW overweighed bond-based risk factors, which performed 
well due to the secular decline in bond yields. 

• Similar to EMW, Risk parity (RP) as well as our versions of Risk Budgeting (RB) and Black-Litterman (BL) had 
strong performance in the 2000s. These models also overweighted low risk assets, and took advantage of persistent 
momentum in several traditional and alternative risk factors. 

• The performances of GMV and MDP were not strong, as these models relied on the persistence of volatility and 
correlations to minimize the risk (or maximize diversification). These approaches often underperformed by e.g. 
missing out on equity-like allocations during the market rally of 2000s. However, in select years (e.g. 2010, 2012) 
these models performed well. 

• The Equal Weight (EW) model was one of the worst performing models. The reason for its underperformance was 
an overly simplistic allocation to risk that ignored asset volatility and correlations. 
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Figure 49: Best performing portfolio allocation method based on 
trailing 3-year reward/risk ratios – No portfolio volatility targeting 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 50: Worst performing portfolio allocation method based on 
trailing 3-year reward/risk ratios – No portfolio volatility targeting 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

  

Figure 51: Best performing portfolio allocation method based on 
trailing 3-year reward/risk ratios – With an 8% annual volatility target 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 52: Worst performing portfolio allocation method based on 
trailing 3-year reward/risk ratios – With an 8% annual volatility target 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
We observed a very similar performance ranking of strategies after applying volatility targeting. For example, portfolio 
Sharpe ratios for each method stand very similar whether we applied constant portfolio volatility targeting or not (Figure 
53). Other performance measures such as Sortino Ratio, Reward to VaR ratios were also quite similar. A possible 
explanation for this is that the across-asset risk factors used in our portfolio construction example displayed relatively 
stable covariance structure during the past 40 years, and hence the portfolios themselves already achieved roughly constant 
volatility levels. 

Interestingly, we did find some minor differences in some measures related to tail risks. For example, Figure 54 below 
shows that applying volatility targeting could reduce the maximum draw-down durations for MVO, while increasing the 
maximum draw-down durations for EW and EMV. This could be due the fact that a momentum on momentum strategy44 
(volatility-targeting on MVO) could further reduce the negative impact of draw-down for this factor portfolio, while 
momentum on mean-reversion (volatility-targeting on EW) worked less well (momentum on mean-reversion is ill-defined). 
The reason for the increase in the draw-down duration for volatility-targeted EMV may be because of that fact that an 
increase in factor correlations didn’t lead to poor average factor performance as it did for a traditional asset portfolio 
(volatility targeting on EMV will weight EMV less when there was an increase in average factor correlation).  

44 See more on the section on “Factor on Factor” in Chapter 2 of the primer.  
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Figure 53: Comparing portfolio Sharpe ratios for different portfolio 
methods with and without volatility targeting 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 54: Comparing maximum drawdown durations (in years) for 
different portfolio methods with and without volatility targeting 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Given that the relative performance of models was not changed, we will continue our analysis of portfolio allocation 
methods without applying volatility targeting. Table 35 below summarizes the performance and risk analytics for the eight 
portfolio construction methods with twelve underlying factors described in the previous section for the out of sample 
period Jan 1975 – Dec 201245.  

Table 35: Performance-Risk metrics for popular portfolio allocation methods during 1972-2012 

 EW MVO GMV MDP EMV RP RB BL 
Average (%) 4.8 5.9 3.9 4.2 4.4 4.3 4.6 4.5 
CAGR (%) 4.8 6.0 3.9 4.3 4.5 4.3 4.6 4.5 
STDev (%) 3.5 3.8 2.8 2.9 2.6 2.6 2.8 2.7 
MaxDD (%) -14.6 -6.3 -4.6 -4.9 -7.1 -5.2 -5.3 -5.5 
MaxDDur (in yrs) 3.6 2.8 3.1 3.8 2.3 3.0 3.3 3.7 
Sharpe Ratio 1.4 1.5 1.4 1.4 1.7 1.7 1.7 1.7 
Sortino Ratio 2.5 3.2 3.0 3.1 3.6 3.6 3.6 3.7 
Calmar Ratio 1.4 1.8 2.7 4.8 3.3 5.7 4.8 4.2 
Pain Ratio 4.7 8.6 6.7 5.0 9.6 8.5 6.8 7.6 
Reward to 95VaR 0.32 0.38 0.40 0.40 0.47 0.49 0.49 0.46 
Reward to 95CVaR 0.21 0.26 0.25 0.25 0.30 0.29 0.29 0.30 
Hit Rate 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
Gain to Pain 2.8 3.4 3.2 3.2 3.8 3.7 3.7 3.7 
Skewness -0.4 0.5 0.7 0.7 0.1 0.4 0.4 0.4 
Kurtosis 2.6 3.4 5.2 4.2 1.8 3.1 2.9 2.7 
Correl with SPX 39.9% 11.2% 8.6% 14.6% 29.1% 20.8% 21.2% 18.6% 
Correl with UST 9.0% 25.1% 23.9% 17.9% 25.7% 23.4% 22.6% 20.3% 
CoSkew with SPX -0.5 -0.3 -0.1 -0.1 -0.4 -0.2 -0.3 -0.3 
CoSkew with UST -0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 
CoKurt with SPX -0.2 -1.6 -2.0 -1.7 -0.6 -1.2 -1.1 -1.1 
CoKurt with UST -2.6 -1.4 -1.2 -1.6 -1.4 -1.2 -1.3 -1.5 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

  

45 We used three years of trailing data to estimate the marginal volatilities and correlation matrix. 
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Based on the historical test of risk models, we can observe: 

• EW had the lowest Sharpe ratio, worst drawdown (-14.6%), and relatively high correlation to the performance of risky 
assets (S&P 500). 

• MVO generated the highest return (CAGR); however, this was more than offset by the volatility, leading to a below 
average Sharpe ratio. On the positive side, MVO had low correlation to risky assets and negative co-kurtosis to bonds 
and equities.  

• GMV and MDP generated low CAGRs, which also led to the lowest Sharpe ratios for these models.  These models 
were obviously focused on minimizing downside risk, and that resulted in the best (smallest) draw-downs, and lowest 
correlation and co-kurtosis to risky asset. 

• EMV, RP, RB and BL had the highest Sharpe and Pain to Gain ratios. This was achieved by a good trade-off between 
returns, risk and draw-downs. RP, RB and BL had somewhat better risk properties than EMV as the model suffered 
from high correlation to risky assets, and relatively high draw-downs (-7.1%). 

• Except EW, all the other seven allocation methods achieved positive skewness and more than 3x Gain-to-Pain ratios, 
which dramatically improved the risk properties of the portfolios as compared to each underlying factor separately. All 
allocation methods had negative co-kurtosis with Equity beta and bond beta, suggesting various levels of ability to 
provide tail hedges to a traditional risky asset portfolio. 

• Generally speaking, EMV, RP, RB and BL had the highest reward to tail risk ratios. 

 
The P/Ls of US$100 (uncollateralized) investments in each of the methods on Dec 1974 are shown in Figure 55 below, 
with the ending P/L reflecting the CAGR for each method. We also show the P/Ls of each method under 5% in-sample 
volatility (we scaled each portfolio to have equal full-sample volatility) in Figure 56, with ending P/L reflecting the Sharpe 
ratios for each method. 
 

Figure 55: P/Ls of a US$100 (uncollateralized) investment on Dec 
1974 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 56: P/Ls of a US$100 (uncollateralized) investment on Dec 
1974 with 5% in-sample volatility 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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One can see that the performances of different methods were closely correlated to each other – this can be verified by 
examining the correlation matrix shown in Table 36. The average correlation coefficients between methods were above 
60%, which didn’t show material change during the 2007-2009 Global Financing Crisis. This is also understandable since 
all the models had long exposures to our selection of 12 risk factors  
 
Table 36: Correlation matrix among different portfolio allocation methods on a same set of assets  

 (%) EW EMV MVO GMV MDP RP RB BL 

Equal Weights (EW)   91 55 35 50 70 72 71 

Equal Marginal Volatility (EWV) 89   74 63 75 90 91 89 
Mean-Variance Optimization (MVO) 59 70   59 76 83 88 80 

Global Minimum Variance (GMV) 48 71 67   95 86 80 87 
Most Diversified Portfolio (MDP) 60 74 69 92   95 91 94 
Risk Parity (RP) 75 89 74 89 94   99 98 
Risk Budgeting (RB) 78 89 81 83 90 97   96 
Black-Litterman (BL) 77 89 79 84 91 97 97   

                  

Ave Correl - All Sample 69 82 71 76 81 88 88 88 

Ave Correl - 07-08 GFC 63 82 73 72 82 89 88 88 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * Lower triangular statistics are the all-sample pair-wise correlation and upper triangular are the correlation statistics during Global 
Financial Crisis (Aug 2007 - Mar 2009). 

 
 
Portfolio Weights Time Series 
We next examine the how asset weights, risk contributions and diversification ratios for the eight portfolio allocation 
methods varied in time. Figure 57-Figure 72 shows the times-series of the asset weights assigned by different portfolio 
methods. We make a few observations below. 

The Equal-Weight (EW) method by definition gives constant weights, while MVO displayed the highest volatility of asset 
weights. This is understandable as our version of MVO uses simplistic return and covariance forecasts (e.g. past 12-month 
factor return as an estimate of the future return). Hence, MVO weights will reflect estimation error from both expected 
returns and the covariance matrix, and give the most volatile weights. 

We can see that all methods put the highest weight in bond factors. The main reason for this is the low volatility of bond 
factors (e.g. as in EMV) and good diversification properties (e.g. as in MDP and RP). Additionally, models that aim to 
reduce total risk and increase diversification, often overweight value factors due to their low levels of correlation to other 
factor styles. 
 
As was evident from the performance and risk summary, GMV and MDP show similar asset weights patterns (aimed to 
minimize risk and draw-downs). Risk-Parity (RP), and our momentum-based version of Risk-Budgeting (RB) and Black-
Litterman (BL) also show similar portfolio weight variations. The Equal-Marginal Volatility (EMV) method is by 
construction underweight in the more volatile factors and overweight in less volatile ones. As EMV doesn’t involve 
estimation on expected return or correlations, its weights tend to be more stable than the other methods.  
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Figure 57: EW - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 Figure 58: EW - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 59: EMV - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 Figure 60: EMV - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 61: MVO - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 62: MVO - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Figure 63: GMV - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 Figure 64: GMV - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 65: MDP - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 66: MDP - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 67: RP - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 68: RP - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Figure 69: RB - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 70: RB - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
 
 

Figure 71: BL - Distribution of portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 Figure 72: BL - Time-varying portfolio weights 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
 

 
Portfolio Risk Time Series 
 
Changes in asset weights are important to understand the model’s stability and estimate transaction costs. Perhaps an even 
more important metric to understand is the time series of portfolio risk attribution. Figure 73-Figure 88 show the time-
series distribution of the ex-ante total risk contribution profiles for different portfolio methods.  We can make several 
simple observations. 

The Equal Weight (EW) method over-allocates to equity risk, given the simplistic approach of giving equal weights to all 
risk factors. On the other hand, EMV allocates risk in a fairly balanced way between different asset classes and factor 
styles.  

Given the high Sharpe ratios and low volatility of bond factors, MVO’s allocation to these factors is high. GMV allocates 
an even higher portion of risk to Bond factors due to their low volatility and correlation. MDP allocates most of the risk to 
value factors across assets, given the low correlation of value factors to the rest of the portfolio. 
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By construction, the Risk Parity (RP) portfolio assigns equal ex-ante risk contribution to each asset. The Risk Budgeting 
(RB) and Black-Litterman (BL) portfolios’ risk contribution follows the RP risk allocation, but modifies it based on 
specific views (in our case price momentum). For instance, one can notice a balanced ex-ante risk attribution of RB and 
BL, with higher recent equity allocation due to the strong performance of the asset class. 

Consistent with our previous theoretical analysis, the ex-ante total risk contribution profile of GMV is equivalent to its 
portfolio weights (see Figure 64 and Figure 80), and for MDP its ex-ante total risk contribution profile is equivalent to the 
product of its portfolio weights and volatilities. Note that the total risk contribution for some risk factors can be negative (if 
the assets’ average correlation with other factors is negative). For example, the average ex-ante risk-contribution from the 
Commodity Value risk factor was -1.6% during the out-of-sample period from Jan 1975 to Dec 2012. 

 

Figure 73: EW - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 74: EW - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 75: EMV - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 76: EMV - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Figure 77: MVO - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 78: MVO - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 79: GMV - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 80: GMV - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 81: MDP - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 82: MDP - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Figure 83: RP - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 84: RP - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 85: RB - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 86: RB - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Figure 87: BL - Distribution of ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 88: BL - Time-varying ex-ante total risk contributions 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
 

To examine how the ex-post total risk contributions compared to the ex-ante expectations, we calculate the realized risk 
contributions from Jan 1975 to Dec 2012. The results are shown in Figure 89-Figure 92. We make several observations: 
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• Despite high volatility of weights and ex-ante risk contribution, MVO allocated risk roughly according to the ex-post 
Sharpe ratio of the individual assets. In other words, MVO allocated more risk to assets with higher Sharpe ratios. 

• As expected, the equal-weight (EW) portfolio realized high risk exposures in high volatility and low correlation factors 
such as commodity beta and equity momentum. On the other hand, it realized too little risk exposure (underweight) in 
low volatility and low correlation factors such as bond beta and commodity value.  

• By construction, EMV’s ex-ante risk allocations are proportional to average factor correlations (note that the total risk 
contribution is proportional to beta, which becomes average correlation as EMV weights are inverse to the assets’ 
volatility). From Figure 90, we find that this objective was met in ex-post terms 

• GMV and MDP allocated high weights to factors with better diversification abilities (such as the Value factors). The 
difference between the risk contributions in these two models is that the GMV put more weight on low volatility 
factors, as the MDP is indifferent to marginal volatility (Figure 91). 

• Despite its ex-ante objective to achieve equal risk contribution, RP put a slight risk overweight in value factors and 
underweight in risky factors like traditional equities and commodities, and currency carry (Figure 92). 
 

Figure 89: Ex-post total risk allocation of MVO and factor Sharpe 
ratios 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Statistics are calculated during the 
period Jan 1975—Dec 2012. 

Figure 90: Ex-post total risk allocation of EW/EMV vs factor average 
correlation and factor volatility 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Statistics are calculated during the 
period Jan 1975—Dec 2012. 

 
 

Figure 91: Ex-post total risk allocation of GMV and MDP  

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Statistics are calculated during the 
period Jan 1975—Dec 2012. 

 Figure 92: Ex-post total risk allocation of RP, RB and BL 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Statistics are calculated during the 
period Jan 1975—Dec 2012. 
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Diversification ratios and Degrees of Freedom 
The ability of a portfolio to maintain low risk through low correlations is measured by the diversification ratio (DR). In our 
introduction to portfolio risk methods, we have showed that the value of the diversification ratio (squared) can be regarded 
as the effective number of independent risk factors (or degrees of freedom) of the portfolio.  

We will first compare the “ex-Ante” diversification for different risk methods. For instance, the Most Diversified Portfolio 
(MDP) will have the best "ex-ante" diversification ratio by construction. ‘Ex-Post’ diversification ratios that are actually 
realized may differ substantially due to uncertainty in model inputs. 

Figure 93 shows the distribution of ex-ante diversification ratios for different portfolio methods and Figure 94 shows the 
time-series of ex-ante diversification ratio relative to that of MDP. We find that GMV, RP, and RB achieved similar ex-
ante diversification ratios to that of MDP, while EW, EMV and MVO trailed behind.  

Figure 93: Distribution of ex-ante diversification ratios 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 94: Time-varying ex-ante diversification ratios* 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Relative to the diversification ratio 
of MDP. 

 

MDP had an ‘ex-ante’ average diversification ratio of 5.4, translating to roughly 30 degrees of freedom, which is much 
higher than the total number of assets (12). We will see that the ‘ex-post’ DR of the MDP was indeed much lower. On the 
other hand, the equal-weighted (EW) method had the lowest average diversification ratio at 3.4, translating to 11.5 degrees 
of freedom, roughly the same as the number of assets.  

The ‘ex-post’ diversification ratios are calculated from realized volatilities and correlations over the full-sample period 
from Jan 1975 to Dec 2012.  Figure 95 shows that MDP, RP, BP and GMV all realized lower ‘ex-post’ DRs as compared 
to ex-ante values. MDP even realized lower diversification than RP and RB. Interestingly, the ex-post diversification ratios 
for EW, MVO, and EMV were roughly equal to their respective historical average ex-ante diversification ratios.  
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Figure 95: Ex-post diversification ratios during 1975-2012 
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  

 
Market Regimes for Portfolio Methods 
We next examine the performance of risk allocation methods under different macro-economic and market regimes defined 
in the previous Chapter. Models are compared based on their Sharpe ratios (assumes portfolio returns follow a normal 
distribution) and reward-to-CVaR ratios (purely focuses on tail risk defined by CVaR).  

Table 37 and Table 38 show the Sharpe ratios and Reward-to-CVaR ratios for the eight portfolio methods under different 
regimes of Growth, Inflation, Volatility, Funding and Market Liquidities. As certain market conditions may benefit or hurt 
all the models (e.g. higher growth, higher inflation, lower volatility and higher funding liquidity will generally benefit each 
portfolio allocation method), we also rank the performance of models in each of the market regimes in Table 39 and Table 
40.  
 

Table 37: Overall Sharpe ratios of popular portfolio allocation methods amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Equal Weighted (EW) 0.83 1.80 1.78 1.08 1.54 1.56 2.12 1.85 0.57 0.90 1.63 1.71 0.35 2.43 1.66 
Equal Marginal Vol (EMV) 1.33 2.01 1.93 1.47 1.74 1.99 2.47 1.72 1.12 1.30 1.81 2.28 0.84 2.40 2.04 
Mean-Variance Opt (MVO) 1.47 1.69 1.44 1.19 1.64 1.78 1.90 1.51 1.19 1.33 1.64 1.84 1.07 2.02 1.46 
Global Min Var (GMV) 1.21 1.34 1.72 1.17 1.09 2.02 1.71 1.33 1.19 1.38 1.37 1.76 1.06 1.79 1.35 
Max Diver (MDP) 1.24 1.52 1.63 1.23 1.21 1.94 1.78 1.54 1.04 1.44 1.22 2.02 0.95 2.07 1.29 
Risk Parity (RP) 1.38 1.79 1.90 1.51 1.54 2.04 2.16 1.71 1.19 1.45 1.55 2.40 1.03 2.30 1.65 
Risk Budgeting (RB) 1.38 1.88 1.81 1.34 1.70 2.00 2.19 1.84 1.05 1.40 1.58 2.36 0.95 2.34 1.69 
Black Litterman (BL) 1.44 1.76 1.85 1.41 1.58 2.07 2.20 1.81 1.08 1.37 1.75 2.16 0.94 2.39 1.70 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Table 38: Overall Reward-to-CVaR ratios of popular portfolio allocation methods amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Equal Weighted (EW) 0.11 0.35 0.30 0.13 0.29 0.26 0.48 0.35 0.07 0.12 0.28 0.27 0.04 0.66 0.25 
Equal Marginal Vol (EMV) 0.20 0.42 0.37 0.21 0.37 0.34 0.57 0.31 0.16 0.20 0.36 0.44 0.11 0.62 0.38 
Mean-Variance Opt (MVO) 0.22 0.31 0.26 0.17 0.29 0.32 0.37 0.26 0.18 0.22 0.30 0.30 0.14 0.49 0.22 
Global Min Var (GMV) 0.18 0.25 0.38 0.18 0.19 0.37 0.42 0.24 0.17 0.24 0.25 0.35 0.13 0.45 0.24 
Max Diver (MDP) 0.20 0.26 0.32 0.17 0.20 0.37 0.46 0.29 0.15 0.26 0.20 0.34 0.13 0.51 0.21 
Risk Parity (RP) 0.22 0.32 0.38 0.22 0.30 0.37 0.55 0.32 0.17 0.24 0.27 0.50 0.13 0.64 0.29 
Risk Budgeting (RB) 0.22 0.32 0.36 0.19 0.31 0.38 0.48 0.37 0.16 0.24 0.27 0.48 0.13 0.68 0.28 
Black Litterman (BL) 0.24 0.34 0.35 0.22 0.32 0.38 0.53 0.36 0.16 0.24 0.32 0.45 0.13 0.65 0.30 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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The shaded area in these tables corresponds to the current market regime of low volatility, low inflation, high liquidity and 
low/medium growth. We also show the average ranking of risk models in all market regimes as well as the average 
performance in the current market regime. 

Table 39: Sharpe ratio ranks (from high to low) of popular portfolio allocation methods amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity Average Rank 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High All Current 
EW 8 3 5 8 5 8 5 1 8 8 4 8 8 1 4 5.6 5.3 
EMV 5 1 1 2 1 5 1 4 4 7 1 3 7 2 1 3.0 2.1 
MVO 1 6 8 6 3 7 6 7 1 6 3 6 1 7 6 4.9 5.4 
GMV 7 8 6 7 8 3 8 8 3 4 7 7 2 8 7 6.2 7.4 
MDP  6 7 7 5 7 6 7 6 7 2 8 5 5 6 8 6.1 6.3 
RP 3 4 2 1 6 2 4 5 2 1 6 1 3 5 5 3.3 3.3 
RB 4 2 4 4 2 4 3 2 6 3 5 2 4 4 3 3.5 3.1 
BL 2 5 3 3 4 1 2 3 5 5 2 4 6 3 2 3.3 3.0 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Table 40: Reward-to-CVaR ratio ranks (from high to low) of popular portfolio allocation methods amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity Average Rank 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High All Current 
EW 8 2 7 8 6 8 5 3 8 8 4 8 8 2 5 6.0 5.4 
EMV 5 1 3 3 1 6 1 5 5 7 1 4 7 5 1 3.7 2.9 
MVO 2 6 8 7 5 7 8 7 1 6 3 7 1 7 7 5.5 6.3 
GMV 7 8 1 5 8 3 7 8 3 5 7 5 2 8 6 5.5 6.6 
MDP  6 7 6 6 7 4 6 6 7 1 8 6 6 6 8 6.0 6.4 
RP 4 4 2 1 4 5 2 4 2 2 5 1 3 4 3 3.1 2.7 
RB 3 5 4 4 3 2 4 1 6 4 6 2 5 1 4 3.6 3.3 
BL 1 3 5 2 2 1 3 2 4 3 2 3 4 3 2 2.7 2.4 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

We find that EMV and RP had the highest average Sharpe ratios across all market regimes as well as under the current 
regime. BL and RP had the highest average Reward-to-CVaR ratio ranks (both overall and under the current regime). EW, 
GMV and MDP were on average lowest ranked, however they did outperform under certain market conditions. For 
instance, GMV and MVO outperformed in low liquidity and high volatility environments, and EW outperformed in mid 
liquidity and mid volatility environments. 
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Sample Portfolio of J.P. Morgan Indices 
 
To further illustrate the performance of portfolio allocation methods, we tested the hypothetical historical performance of 
portfolios consisting of 14 Traditional, Carry, Momentum, Value and Multi-Style indices created by J.P. Morgan. The 
performance time series of these models are available on Bloomberg and strategy details are available to J.P. Morgan 
clients. Table 41 below lists a brief description of these risk factors. 

Table 41: Description of J.P. Morgan indices used for a portfolio allocation exercise 
Ticker Index Name JPM Index Family Asset Class Strategy Style 
JHDCGBIG Global Government Bond Index46 (GBI) GBI  Rates Traditional 
JCTAADJE Alpha S&P GSCI Light Energy Contag  Commodities Carry 
IFXJAM30 IncomeAsia 3.0  Income FX Currencies Carry 
YAJPMUS2 JPM Yield Alpha USD Index  YieldAlpha Multi Asset Carry 
EEJPUS5E ETF Efficiente 5 Efficiente Multi Asset Momentum 
JMOZUSD Mozaic USD  Mozaic Multi Asset Momentum 
JHLXH2US Helix2  - Basket Hedged in USD  Helix Rates Momentum 
JMOMQTO Momentus Quattro in USD  Momentus  Rates Momentum 
JMAB3CER 3C   3C Commodities Value 
JPOLARE Polaris Equal Weighted Portfolio Hedge Commodities Value 
JMAB008E Commodity Alpha Basket 8 Alpha Basket Commodities Multi Style 
AIJPB1U5 J.P.Morgan AI Top 20 Sharpe AIS Multi Asset Multi Style 
JPCVTOUS CurveTrader M+ USD Index  CurveTrader  Rates Multi Style 
JMSIRRUS Sirrus Sirrus Rates Multi Style 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 96 below shows the Sharpe ratio, Sortino Ratio and Calmar Ratio for the individual risk factor indices (performance 
metrics calculated before commissions and bid-offer spreads). During the 13-year period from Jan 2000 to Dec 2012, these 
indices on average achieved better risk-adjusted rewards than the simple factor models we introduced in our introduction to 
Risk Factor Classification Chapter.  

Figure 96: An example of superior risk-adjusted reward profiles for J.P. Morgan tradable indices 
       (x) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. *Statistics were calculated during Jan 2000 to Dec 2012. 

 
A correlation matrix for the 14 factors during the full sample period and during the recent Global Financial Crisis (August 
2007-March 2009), as is shown in Table 42.  

46 Excess return is calculated by adjusting for 1-month US$ Libor rate. 
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Table 42: Correlation among J.P. Morgan tradable indices during Jan 2000 – Dec 2012 (below diagonal) and During GFC (above diagonal). 

  
Alpha 
Basket 

Yield 
Alpha 

Portfolio 
Hedge AIS GBI Contag 3C Helix Curve 

Trader Sirrus Mozaic Efficiente Income 
FX Momentus 

Alpha Basket   66 5 4 -12 56 -25 30 -31 14 4 36 8 11 

YieldAlpha 13   52 -15 2 39 -72 15 -23 14 22 65 52 27 

Portfolio Hedge 9 5   -8 65 26 -57 51 -13 44 40 63 34 80 

AIS 31 13 -5   27 29 45 26 -21 -7 34 25 -5 -7 

GBI  -11 -8 0 23   40 -8 45 -10 42 49 45 8 58 

Contag  68 7 13 36 -2   -14 40 -19 22 26 49 35 24 

3C 6 -28 10 27 -6 1   1 -1 -17 2 -45 -60 -35 

Helix -8 10 9 26 33 -17 -1   16 19 44 27 4 63 

CurveTrader  -8 -9 -9 7 24 -2 -2 37   -23 17 -30 17 -21 

Sirrus -5 -5 -4 4 27 0 -18 27 11   37 44 -13 44 

Mozaic 10 21 13 38 35 5 19 36 16 9   65 32 27 

Efficiente 6 41 12 25 37 10 -4 19 2 2 65   49 52 

Income FX 7 39 -4 13 -8 5 -19 14 7 -12 31 31   10 

Momentus  -3 0 10 4 33 -1 -6 48 30 25 20 15 2   

                              

Full Sample Ave 9 8 4 19 14 9 -1 18 8 5 24 20 8 14 

During GFC 13 19 29 10 27 27 -22 29 -11 17 31 34 13 26 

Source: J.P. Morgan Quantitative and Derivatives Strategy. * Lower triangular statistics are the all-sample pair-wise correlation and upper triangular are the correlation statistics during GFC. 

Most of the factors were positively correlated to each other over the full sample period and the correlation increased during 
the Global Financial Crisis. However, some of the factors showed significant negative correlation (e.g. 3C, and 
CurveTraderM+ ). The selection of assets had a tilt to bond-based factors, as the average correlation between GBI (J.P. 
Morgan Global Government Bond Index) and other factors was 14%, which further increased to +27% during global 
financial crisis. This has likely contributed to the strong performance over the backtest time-period. Figure 97 below shows 
the 1-year average correlation of the portfolio assets, which can be compared with Figure 98 that shows the average 
correlation of US equities (S&P 500), US High yield bond (CSIYUS), Commodities (SPGSCIP) and Real Estate (REIT 
Index). We find that the average correlation among the 14 factor indices has been range bound between +5% and +20%. 
Furthermore, correlation did not increase during the crisis, unlike the correlation between traditional assets. 

Figure 97: Rolling 52-week average correlation among a basket of 
J.P. Morgan tradable indices 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. 

Figure 98: Rolling 52-week average correlation among risky asset 
portfolio of US equities, US credit, commodities and REIT 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg.  
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We further apply the eight portfolio allocation methods in the previous sections to the above 14 tradable indices during the 
out-of-sample period Jan 2001-Dec 2012. For risk model estimates, we used trailing 12-month returns, trailing 60-day 
realized volatility, and trailing 1-year correlations, and applied a volatility target of 5%. 

Table 43 below summarizes the performance (before commissions and spreads) and risk metrics for different allocation 
methods, and compares them with Traditional Equities, Bonds and a Hedge Fund Index47.  

Table 43: Performance-Risk metrics for portfolio allocation methods, with Equity, Treasury bond and Hedge Fund beta, during 2001-2012 
 

EW EMV MVO GMV MDP RP RB BL Equity Bonds 
Hedge 
Funds 

Average (%) 15.9 18.1 21.3 17.1 19.7 19.3 20.3 19.5 1.9 2.8 3.7 
CAGR (%) 17.0 19.5 23.3 18.3 21.4 20.9 22.1 21.2 0.5 2.7 3.5 
STDev (%) 5.0 5.0 5.4 4.6 5.5 5.2 5.4 5.2 16.8 3.1 6.4 
MaxDD (%) -2.1 -2.7 -4.0 -6.3 -4.6 -5.0 -3.4 -4.4 -55.8 -5.5 -24.4 
MaxDDur (in yrs) 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.3 5.2 3.3 3.1 
Sharpe Ratio 3.2 3.6 4.0 3.7 3.6 3.7 3.8 3.7 0.1 0.9 0.6 
Sortino Ratio 11.1 13.0 13.8 10.5 12.8 12.5 14.4 13.0 0.2 1.5 0.8 
Calmar Ratio 9.1 12.5 13.4 16.9 12.6 12.5 14.0 12.3 0.1 0.8 0.4 
Pain Ratio 91.1 120.5 166.6 100.1 109.5 115.9 140.9 122.2 0.1 2.1 0.8 
Reward to 95VaR 1.1 1.6 2.0 1.7 1.7 1.7 1.8 1.7 0.0 0.2 0.1 
Reward to 95CVaR 0.8 0.9 1.0 0.9 1.0 0.9 1.0 1.0 0.0 0.2 0.1 
Hit Rate 82.6% 88.2% 88.9% 86.8% 85.4% 86.8% 87.5% 86.8% 56.3% 61.8% 62.5% 
Gain to Pain 11.7 14.8 17.4 13.3 13.9 14.7 17.1 15.2 1.1 1.9 1.5 
Skewness 0.1 -0.1 -0.3 -0.6 -0.1 -0.2 -0.1 -0.2 -0.7 0.0 -0.9 
Kurtosis 0.2 -0.1 0.7 1.8 0.1 0.5 0.0 0.4 1.4 -0.1 1.9 
Correl with Equity 10.3% 9.5% 17.5% 28.5% 16.9% 16.1% 14.0% 15.5% 100.0% -32.7% 87.6% 
Correl with Bond 35.7% 42.0% 28.5% 37.5% 37.3% 42.4% 41.3% 41.8% -32.7% 100.0% -34.0% 
CoSkew with Equity -0.2 -0.3 -0.3 -0.5 -0.3 -0.4 -0.3 -0.4 -0.7 0.1 -0.7 
CoSkew with Bond -0.1 -0.1 0.1 0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 
CoKurt with Equity -2.6 -2.3 -2.3 -0.9 -1.7 -1.7 -2.0 -1.8 1.4 -3.9 0.9 
CoKurt with Bond -1.9 -1.8 -2.1 -1.8 -1.9 -1.8 -1.7 -1.8 -3.8 -0.1 -4.0 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
During 2001-2012, a risk-managed portfolio of J.P. Morgan alternative indices achieved attractive risk-reward profiles. 
The MVO portfolio generated the highest return (+23.3%) and Sharpe ratio (4.0) with only a -4% maximum drawdown 
during this twelve-year period including the 2007-08 Global Financing Crisis.  

Comparatively, global equities, bonds and hedge funds annual returns were +0.5%, +2.7% and +3.5%, with maximum 
draw-downs of -55.8%, -5.5% and -24.4%, respectively, The Gain-to-Pain ratio for the MVO portfolio was very high at 
17.4, compared to 1.1, 1.9 and 1.5 for global equities, bonds and hedge funds. 

The overall strong outperformance of alternative indices (relative to traditional assets) was primarily due to uncorrelated 
yield (alpha) as well as the ‘bond’ bias in the original selection of risk factors. For example, the full sample correlation of 
the portfolios with bonds was highly significant, with the Risk-Parity (RP) portfolio 42% correlated to Bonds. 

47 We use MSCI All-Country World Net total return index (NDDUWI Index) minus cash yield for global equity beta, J.P. Morgan 
Global Aggregate Bond total return Index (JHDCGBIG Index) minus cash yield for global bond beta, and HFR Weighted Composite 
Hedge Fund Index (HFRIFWI Index) minus cash yield for global hedge fund beta. 
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Figure 99: Performance (before commissions and spreads) of risk managed portfolios of J.P. Morgan risk factor Indices (left hand side) 
compared with Equities, Bonds and Hedge Funds (right hand side) 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Past performance is no indication of future results. 

 
Figure 100 shows the allocation weights for the Risk-Parity portfolio, and Figure 101 ex-post total contribution to risk for 
each of the factors (for RP, MDP, MVO). 

Figure 100: Statistical distributions of the unlevered weights of the assets for a Risk Parity Portfolio during 2001-2012 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg 
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Figure 101: Ex-post Total Risk Contribution for a portfolio of J.P. Morgan tradable indices 

  
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. *Statistics were calculated during the out-of-sample period from Jan 2001 to Dec 2012. 

From the total risk allocation chart, we can see that MVO out-performance was in part due to the allocation of risk towards 
the best-performing index (Alpha Basket), and was further helped by the stable returns and correlations of alternative 
indices over the backtest sample. Despite the high risk-adjusted performance of MVO, we would prefer a method with a 
more balanced allocation of risk (such as RP). Concentrated allocations to individual strategies can introduce idiosyncratic 
risks – should the overweighted factor fail to deliver past returns, MVO would likely underperform other models. 

To confirm the risk managed portfolio indeed generated alpha, we perform two regression analyses while controlling for 
the systematic factors contributing to the portfolio return. In the first regression, the excess return of the MVO portfolio is 
regressed on the Fama-French (2012) four factors of global equities, plus the excess return of J.P. Morgan Global 
Government Bond Index (the global Bond factor) and the excess return of J.P. Morgan EMBI Global Index (the global 
EM/Credit factor).  

In the second regression, we replaced the Fama-French, Bond and Credit factors with Traditional, Carry, Momentum, 
Value and Volatility factors. Each factor is an equal marginal volatility (EMV) weighted index on cross-asset factors 
within each style during the period Jan 2001 to Dec 2012.  

Table 44: Regression of MVO portfolio of J.P. Morgan tradable indices on Fama-French Global four factors, plus Global Bond and Credit 
factors 

 Alpha Mkt-RF SMB HML WML GBI  EMBI  
Coefficients 1.56 0.04 0.01 0.00 0.00 0.42 0.14 
t-Stat 11.64 1.37 0.15 0.09 0.02 2.94 3.13 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Table 45: Regression of MVO portfolio of J.P. Morgan tradable indices on Cross Asset Systematic Style factors 
 Alpha Traditional Carry Momentum Value Volatility 
Coefficients 1.57 0.33 0.08 0.37 0.20 -0.24 
t-stats 12.15 4.64 0.72 4.07 1.54 -2.20 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

In both cases, the Alpha component was the most statistically significant contribution. The MVO portfolio also had 
significant positive exposures to Bond factors, as well as to Traditional and Momentum factors in the second regression. 
Exposure to volatility was negative, a likely result of long bond exposure. In addition to alpha, strong and persistent 
(momentum) performance of bonds over the sample period contributed to the strong performance of the specific choice of 
J.P. Morgan risk factor indices. In the Appendix of the report, we provide a comprehensive list of traditional and alternative 
investable risk factor indices published by J.P. Morgan.   
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J.P. Morgan Investment Strategies Research 
 
Over the past decade, the cross-asset research teams at J.P. Morgan have put together a rich collection of papers on 
traditional as well as cutting edge issues related to Cross-Asset Systematic Strategies. Table 46 below maps the number of 
our research papers into the Asset Class versus Factor Style matrix for easy reference of the readers who may be interested 
in a particular topic such as Currency Carry or Multi Asset Momentum. 

Table 46: List of J.P. Morgan Research Papers on Cross Asset Systematic Strategies 

JPM Paper No. Traditional Beta Carry Value Momentum Volatility Multi-Strategy 

Equities 9, 23, 78, 83, 103 21, 68, 96, 103 
11, 16, 38, 52, 58, 
66, 78, 79, 81, 84, 
85, 87, 91, 94, 95, 

103, 104 

14, 26, 35, 41, 42, 53, 
56, 58, 65, 69, 79, 89, 

90, 103, 104  
28, 51, 75, 85, 86, 

88, 99, 101, 103 

9, 11, 14, 16, 21, 26, 35, 38, 
41, 42, 52, 53, 56, 58, 65, 
66, 69, 78, 79, 80, 87, 88, 
91, 92, 93, 97, 100, 101, 

102, 103, 104  

Rates 9, 18 15, 21, 31 2, 5, 11, 13, 16, 22, 
64, 66, 72 

14, 27, 32, 34, 35, 43, 
48, 65, 67, 69 51, 75, 88, 99, 101 

2, 5, 11, 14, 16, 18, 21, 32, 
39, 43, 65, 66, 67, 69, 72, 

74, 101 

Credit 9, 19, 20, 49, 63, 70, 
85 21, 36, 50 1, 11, 29, 30, 37, 38, 

52,  64, 71, 81 14, 35, 44, 69, 76 24, 51, 75, 88, 99, 
101 

1, 9, 11, 19, 20, 29, 30, 39, 
45, 61, 69, 76, 101 

Currencies 9, 17, 60, 62 12, 21, 33, 77 3, 4, 6, 7, 8, 10, 55, 
66 14, 35, 69 51, 75, 88, 99, 101 3, 4, 6, 7, 8, 9, 10, 17, 21, 

33, 39, 47, 60, 62, 101 

Commodities 9, 23, 73 21, 54, 68 59, 10 14, 25, 35, 40, 59, 69 51, 75, 88, 99, 101 9, 21, 23, 39, 40, 54,  59, 
68, 69, 101 

Volatility 9, 24, 28, 88, 99 21, 75, 88 24, 28, 82, 86, 88, 
95 14, 35, 69, 88 51, 75, 88, 99, 101 24, 28, 39, 79, 85, 88, 104 

Multi Asset 9, 17, 18, 19, 23, 24, 
28, 39, 46, 57, 70, 95 

12, 15, 21, 31, 33, 
39, 54, 68, 75, 77 

1-8, 10, 11, 16, 38, 
39,  52, 65, 66, 95 

14, 25, 26, 27, 35, 39, 
41, 42, 43, 44, 51, 69 

24, 28, 39, 51, 75, 
88, 99, 101 

9, 10, 11, 14, 16, 21, 23, 35, 
38, 39, 51, 52, 65, 66, 68, 

69, 70, 81, 88, 101 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Table 47 below lists all our previous investment strategy papers according to the paper numbers. 
  

Table 47: List of J.P. Morgan Research Papers on Cross Asset Systematic Strategies 

Publication Date 
(dd/mm/yyyy) Headline Abstract/Highlights 

10/12/2013 
Investment Strategies No. 104: 
Market Impact of Derivatives 
Hedging - Weekly Patterns  

Investigates the impact of expiry week delta hedging and month-end asset 
rebalances on weekly S&P 500 price patterns. Also included is a ‘momentum-
enhanced’ S&P 500 overwriting strategy that mitigates this market impact. 

10/12/2013 
Investment Strategies No. 103: 
Equity Factor Reference 
Handbook  

A compilation of quant factor reference books across the US, Europe, Asia ex-
Japan, Australia and GEM regions. 

10/12/2013 Investment Strategies No. 102: 
Equity Risk Timing 

These reports provide the ingredients for building a Market Timing tool. A direct 
implementation of this is dynamic Beta neutralization using a risk timing model. 

10/12/2013 Investment Strategies No. 101: 
Risk Methods  

Looks at risk-based portfolio construction approaches and suggests changes to 
improve risk adjusted returns. Also included is a deep-dive into the J.P Morgan Risk 
Platform. 
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 10/12/2013 Investment Strategies No. 100: 
Equity Factor Rotation Models  

Research on topics such as style switching, regime timing, macro factor rotation and 
dynamic factor rotation modeling. 

10/12/2013 Investment Strategies No. 99: 
Cross-Asset Correlations  

Examines the reasons behind the rise in cross-asset correlations, such as central 
bank monetary stimulus. We also show how to implement cross-asset views directly 
through OTC “hybrid” derivatives. 

10/12/2013 Investment Strategies No. 98: 
Trading Equity Correlations  

Investigate the reasons behind recent high levels of correlation and explains how 
dispersion trading can be used to capture correlation risk premium.   

10/12/2013 Investment Strategies No. 97: 
Event-Driven Equity Factors  

These reports investigate underlying equity returns following various event-driven 
catalysts, such as changes in dividend policies, and M&A announcements.  

10/12/2013 Investment Strategies No. 96: 
Dividend Yield Factors  

We show how volatility can be reduced substantially by the integration of Dividend 
Yield as a Factor in Quant models. The reports also explore a new Factor classified 
as ‘Shareholder Yield’ in academic papers. 

10/12/2013 Investment Strategies No. 95: 
Investing in Dividend Swaps  

Analyzes opportunities in global dividends and discusses the market, mechanics, 
long-term economic drivers and uses of dividend swaps.  

10/12/2013 Investment Strategies No. 94: 
Equity Value Factors  

Focuses on identifying effective equity valuation factors and includes analysis that 
shows that expensive P/E stocks are better short candidates from a valuation-based 
perspective.  

10/12/2013 Investment Strategies No. 93: 
Equity Country Selection 

Details the development of a quantitative model which aims to select between 
emerging markets. Also included is analysis on the growing relevance of sector 
selection in Asia and GEM.   

10/12/2013 Investment Strategies No. 92: 
Equity Sector Models  

Macro domination of stock returns has been a recurring theme since the financial 
crisis. These reports focus on factors and investment styles to be considered in 
building a successful sector allocation model.   

10/12/2013 Investment Strategies No. 91: 
Equity Quality Factors  

We investigate how various equity factors, such as Return on Equity and Accruals, 
can be augmented to contribute to quantitative alpha. 

10/12/2013 Investment Strategies No. 90: 
Earnings Factors  

Examines the relationship between Earnings Momentum and Price Momentum and 
outline s strategies that can be developed to improve earnings-based signals. Also 
included is an analysis of how investing based on changes in analyst target prices 
has proved to be a profitable strategy. 

10/12/2013 Investment Strategies No. 89: 
Equity Momentum 

Reviews various enhancements to a basic Price Momentum strategy. Also includes 
a backtest of the Trend Factor in various markets to understand the effect of 
momentum on stock returns.  
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 10/12/2013 Investment Strategies No. 88: 
Signals from Options Markets  

Illustrates how signals from the options market, such as implied volatility skew, can 
be used to improve risk management of a portfolio.  

10/12/2013 Investment Strategies No. 87: 
Equity Factor Seasonality 

Examines the impact of implementing periodic seasonality in Factor returns. A 
seasonality-based trading model can work as a stand-alone strategy as well as be 
integrated into a Multi-Factor model framework.  

10/12/2013 
Investment Strategies No. 86: 
Equity Volatility Value - Range 
Bound Model  

The Range-Bound report ranks stocks that, relative to their volatility, appear likely to 
remain in a tight trading range. These mean reverting stocks make good candidates 
for selling options via range bound strategies such as straddles, strangles, or call 
overwrites. 

10/12/2013 Investment Strategies No. 85: 
Investing in Convertible Bonds  

Looks at the impact of convertibles on the performance of underlying equities. Also 
included is a screen that provides a list of convertibles that can be used as additions 
(or substitutes) to bond and stock portfolios to either enhance yield, provide equity 
upside, or hedge downside risk. 

10/12/2013 Investment Strategies No. 84: 
Equity Pairs Trading 

Discusses the various methods of identifying pairs, noting the need to avoid 
spurious correlations. Also included is a sample trade triggered by the Pairs Trade 
Model. 

10/12/2013 Investment Strategies No. 83: 
Equity Indexation Strategies 

These reports analyze the performance of stocks following their inclusion in or 
exclusion from (globally accepted) benchmarks. Also included in this compilation is 
our annual Index Handbook – an overview of passive indexation, a summary of 
index methodologies employed by major index providers and a detailed schedule of 
index rebalance events every year. 

10/12/2013 
Investment Strategies No. 82: 
Equity Volatility Value - RV 
Model  

The Relative Value (RV) Score is a quantitative framework for screening relative 
value opportunities in single stock volatility based on a combination of fundamental 
and technical factors. 

10/12/2013 Investment Strategies No. 81: 
Equity - Credit Factors  

CDS spreads have gained widespread acceptance as an important indicator of 
distress and more specifically of credit risk. These reports analyze the impact of 
single-name CDS on stock returns and the impact of credit ratings on stock 
performance. 

10/12/2013 Investment Strategies No. 80: 
Equity Multi-factor Models  

We introduce the Q-Snapshot - a standardized, easy-to-read summary of 
Quantitative metrics condensed into an overall company Q-score from a universe of 
more than 3,000 listed companies in Europe. 

10/12/2013 
Investment Strategies No. 79: 
Market Impact of Derivatives 
Hedging - Daily Patterns  

This compilation of reports estimates the market impact of gamma hedging of 
derivative products (options and levered ETFs) and discusses how to construct 
systematic trading strategies around this. 

31/10/2013 Investment Strategies No. 78: A 
country model for equities 

We develop a trading model for allocating between 16 major equity markets across 
both DM and EM. We find that changes in manufacturing PMIs, changes in 
exchange rates, and value, proxied by the price-to-cashflows ratio, generate 
profitable signals for rotating between countries. 

18/01/2013 
Investment Strategies No. 77: 
Optimizing FX reserve 
management 

Central bank reserve managers hold almost $11tr of FX reserves. Currently, their 
portfolio likely yields around 30bp, likely well below funding costs for many from EM, 
and thus raising pressure to seek better returns. 

12/12/2012 
Investment Strategies No. 76: 
Using review ratios to trade 
corporate credit 

We analyze US and European credit investment strategies based on rating review 
ratios. 
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 28/11/2012 
Investment Strategies No.75: 
Risk Premia in Volatility 
Markets 

We find that we can enhance the performance of volatility carry strategies. These 
carry strategies exploit the difference between implied and realized volatility via 
trading variance swaps, delta-Risk Management straddles or similar payoffs. 

2/10/2012 Investment Strategies No. 74: 
Simple rules to trade duration 

In this paper, we describe a range of simple systematic rules for trading duration, 
through futures on 10-year US, German, Japanese and UK government bonds. 
These rules provide a complement to more qualitative and discretionary judgments 
on... 

11/7/2012 Investment Strategies No. 73: 
Gold in asset allocation 

There is no consensus on how much gold you should own in your portfolio. Some 
investors hold a lot. Most hold nothing. 
 
In this paper, we take an asset allocation approach to assess how much gold one 
should hold strategically in a portfolio that... 

9/3/2012 
Investment Strategies No. 72: 
Exploiting reversals in cross-
market yield spreads 

Overweighting duration in markets where yield curves have steepened most, against 
those where curves have steepened least, would have produced a return to risk of 
up to 0.9, net of transactions costs, across DM swap markets since 1995, with little... 

13/02/2012 
Investment Strategies No. 71: 
Trading Rich / Cheap Signals in 
EM Sovereigns & Corporates 

We introduce a simple and intuitive method for highlighting relative value among 
Emerging Markets Sovereign and Corporate US$-denominated bonds of an issuer 

13/02/2012 
Investment Strategies No. 70: 
Playing Away from Home in the 
Credit markets 

Investing in a different currency exposes an investor to large foreign exchange risk 
which they may be unwilling to bear. We show that simple hedging strategies 
involving either FX swaps or cross currency basis swaps allow investors to remove 
most of their foreign currency exposure. 

12/1/2012 
Investment Strategies No. 69: 
REVISITING: Using the Global 
PMI as trading signal 

In Sep 2009, we published a trading rule that goes long Global Cyclical vs. 
Defensive sectors if the Global Manufacturing PMI improves and vice versa.  
 
Out of sample, since mid 2009, this trading rule has performed well but only when 
using the... 

9/12/2011 
Investment Strategies No. 68: 
Commodity Equities or 
Futures? 

Measures of relative value/carry of commodity equities and commodity futures are 
reliable signals when deciding whether to be long commodity equities or futures.  
 
Relative carry is determined by the shape of the futures curves and yield measures 
of... 

16/11/2011 
Investment Strategies No. 67: 
Using unemployment to trade 
bonds 

Unemployment rates provide a profitable signal for trading government bonds.  
 
Overweighting government bonds in countries where unemployment is rising most 
against those where unemployment is rising least would have produced a return to 
risk of up... 

24/06/2011 Investment Strategies No. 66: 
Trading the US vs. Europe 

We develop a set of fair value and trading models for allocating between US and 
Euro assets. We find that fundamental variables provide profitable low-frequency 
trading signals for trading the 10-year US-EU swap rate difference, the relative 
equity... 

28/03/2011 

Investment Strategies No. 65: 
Trading on economic data 
releases: What works? What 
does not? 

We examine the profitability of a range of signals for trading stock and bond markets 
in a half-hour window around major US data releases. Basic models can predict 
data surprises, but this is not exploitable for trading as the market seems to... 
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 9/2/2011 
Investment Strategies No.64: 
Evaluating bond markets in a 
world of rising debt 

We assess the relative riskiness of 19 different bond sectors, i.e. sovereign, local 
government, bank and corporate, based on 6 universal metrics: debt/income, 
interest expense/income, yield volatility, debt redemptions/debt, foreign ownership,... 

26/01/2011 
Investment Strategies No. 63: 
CDS Options Strategies - 
Strategies for every investor 

CDS options are liquid, high volume products that provide attractive investment 
opportunities for many classes of investor. Typical trades include buying out-of-the-
money payer options and selling receiver options (asset managers), hedging 
against... 

10/1/2011 
Investment Strategies No. 62: 
Tail-risk hedging with FX 
options 

In this study we assess the empirical efficiency of using FX option strategies to Risk 
Management against market tail risk events We extract a benchmark set composed 
of 12 currency pairs most reactive to risk markets A comparison of various option 
strategies... 

18/11/2010 
Investment Strategies No. 61: 
Sector rotation in corporate 
bonds 

A strategy that rotates between US Cyclical and Defensive corporate bond sectors 
using the Global PMI new orders-to-stock ratio produced a return-to-risk of 1.1 since 
2000. Momentum is also useful but only in absolute return, not relative.... 

28/05/2010 

Investment Strategies No. 60: 
Managing FX Risk 
Management ratios - A 
framework for strategic and 
tactical decisions 

Unprecedented volatility over the past two years has heightened investor and 
corporate attention towards managing FX Risk Management ratios.  For investors, 
four issues predominate: (1) how to determine the long-term, optimal Risk 
Management ratio; (2) how to time... 

28/10/2009 
Investment Strategies No. 59: 
Economic and Price Signals for 
Commodity Allocation 

Economic activity signals, such as global IP growth and global manufacturing PMI, 
are leading indicators of future commodity performance. Simple rules that use 
economic activity signals have performed well in the past decade, delivering 
Sharpe... 

8/9/2009 
Investment Strategies No.58: 
Trading Cyclical vs Defensive 
equity sectors 

A trading rule that goes long Global Cyclical vs Defensive sectors if the global 
manufacturing PMI new orders-to-stocks ratio rises and vice versa, produced a good 
information ratio of 0.65 since 1998. The global PMI has also provided a profitable... 

22/06/2009 
Investment Strategies no. 57: 
Longevity Risk and Portfolio 
Allocation 

The value of pension fund and life annuity liabilities increases with life expectancy. 
These institutions are in effect short longevity. Longevity-linked securities, such as 
mortality forwards and longevity swaps, allow these institutions to... 

29/04/2009 
Investment Strategies No. 56: 
The EM vs Developed Markets 
equity allocation 

A return momentum strategy that goes long EM equities vs Developed Markets 
(DM) if the former outperformed in the previous 2 months and vice versa, produced 
an information ratio of 0.86 since 1988 An economic momentum strategy based on 
the... 

29/04/2009 
Investment Strategies No. 55: 
Trading and Hedging Long-
Term FX Fundamentals 

At the beginning of April, G10 currencies were misaligned by nearly 10% on average 
against the USD, with EUR and JPY crosses misaligned by more than 12% and 
14% on average. Misalignments are statistically and economically significant in 
predicting... 

24/04/2009 
Investment Strategies no. 54: 
Profiting from slide in 
commodity curves 

The slope of the futures curve is a profitable signal for long-short strategies on 
commodities futures contracts.  The slope of the curve also helps in deciding where 
along the curve to position.  Simple strategies have information ratios around 1.5... 
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 26/02/2009 
Investment Strategies No. 53.  
Combining Directional and 
Sector Momentum 

We use a simple directional momentum signal to determine whether to invest in the 
long-only or the long-short sector momentum strategy, and obtain Sharpe ratios of 
up to 0.9 since 1996 vs 0.0 for the MSCI World index. 

24/11/2008 Investment Strategies No 52: 
Macro Credit-Equity Trading 

We introduce a top down framework that expands JPMorgan's Credit-Equity CEV 
model to analyze the relationship between the Euro Stoxx 50 Index and iTraxx Main. 
The JPM CEV model uses equity prices and volatility surfaces to calculate default... 

20/11/2008 
Investment Strategies No 51: 
Volatility signals for asset 
allocation 

Deleveraging in periods of high volatility, and releveraging in periods of low volatility, 
i.e., risk-budgeting, generates higher risk-adjusted returns with lower tail risk for 
equities, commodities, and bonds. 

25/09/2008 
Investment Strategies No. 50: 
Timing carry in US municipal 
markets 

Simple economic signals - level of carry, monetary policy expectations, and 
momentum - help in timing the profitability of muni carry trades 

3/9/2008 
Investment Strategies No. 49: 
Hedging Default Risk in 
Portfolios of Credit Tranches 

As default concerns rise, credit tranche investors need to know if their books have 
name concentrations that expose them to large losses from multiple defaults. 

14/08/2008 Investment Strategies No. 48: 
Global bond momentum 

An equally-weighted basket of individual bond momentum strategies across 
countries produces high information ratios of up to 1.2 

8/8/2008 
Investment Strategies No. 47: 
Alternatives to standard carry 
and momentum in FX 

Carry and momentum are the most commonly followed trading strategies in 
currency markets, and probably in any asset class. 

29/07/2008 Investment Strategies No. 46: 
Hedging Illiquid Assets 

Illiquidity distorts relative price relationships, playing havoc with hedging strategies 
that work smoothly in liquid markets. 

2/6/2008 
Investment Strategies No. 45: 
Active Strategies for 130/30 
Emerging Markets Portfolios 

The 130/30 class of portfolios present opportunities for investment managers to 
grow their assets under management 

13/05/2008 
Investment Strategies No. 44: 
Momentum in Emerging 
Markets Sovereign Debt 

Momentum in Emerging Markets is particularly pervasive because of difficulty in 
assessing value and higher information search costs across various economies, in 
our opinion 

20/05/2008 Investment Strategies No. 43: 
Trading the US Curve 

Monetary policy momentum, curve momentum, positions on 10y UST and economic 
sentiment are profitable signals in trading the US curve 

19/05/2008 
Investment Strategies No. 42: 
Cross-momentum for EM equity 
sectors 

We find evidence of momentum in EM equity sectors, but it is more profitable to 
invest across EM sectors according to past global sector performance 

9/5/2008 
Investment Strategies No. 41: 
Momentum in Global Equity 
Sectors 

Active momentum-based strategies in global equity sectors offer high returns to risk, 
and perform well in both bull and bear markets; Buying the top-third performing 
global sectors over the past year outperforms an equal sector allocation by... 

29/04/2008 
Investment Strategies No. 40: 
Optimizing Commodities 
Momentum 

We show that dynamic mean-variance optimization enhances the return to risk of 
commodities momentum strategies 

10/3/2008 
Investment Strategies No. 39: 
Risk Management Fund 
Alternatives 

We analyze the pros and cons of Risk Management fund replication and rule-based 
investing. 

12/12/2007 
Investment Strategies No. 38: A 
Framework for Credit-Equity 
Investing 

The relationship between Credit and Equity markets is an important signal for both 
markets but not simple to capture. 
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 10/10/2007 
Investment Strategies No. 37: 
Learning Curves - Curve 
Trading Using Model Signals 

In this note we analyze our model for predicting the steepness of single name CDS 
curves and test the effectiveness of its predictions. 

25/09/2007 Investment Strategies No. 36: 
Carry-to-Risk Credit Indices 

Credit Carry-to-Risk is a relative value framework for comparing credits. It aims to 
highlight value across different credits by identifying those that provide the highest 
Carry (income return) for the Risk taken (volatility of return). 

7/8/2007 
Investment Strategies No. 35: 
Markowitz in tactical asset 
allocation 

Classical mean variance portfolio optimization, conceived by Harry Markowitz in 
1952, is used frequently for long-term strategic asset allocation, but not for tactical 
asset allocation. 

2/8/2007 Investment Strategies No. 34: A 
simple rule to trade the curve 

The strategy: invest in flatteners when central banks tighten and steepeners when 
central banks ease, look for carry when policy rates are on hold 

9/7/2007 
Investment strategies No. 33: 
Rotating Between G-10 and 
Emerging Markets Carry 

Carry trade performance has been impressive this year, both for G-10 and emerging 
market currencies. 

17/05/2007 Investment Strategies No. 32: 
Momentum in Money Markets 

Momentum-based trading strategies offer attractive risk-adjusted returns on Euro 
area and US money markets. 

11/1/2007 
Investment Strategies No. 31: 
Exploiting carry with cross-
market and curve bond trades 

The strategy: enter into a spread trade-cross market or curve- that offers the highest 
carry-to-risk 

17/11/2006 Investment Strategies No.30: 
Relative Value in Tranches II 

In this short note we apply the results from our return-to-risk analysis for tranches 

17/11/2006 Investment Strategies 29: 
Relative Value in Tranches I 

We have developed an approach to analyze return-to-risk in tranches. We think this 
framework can be used to identify long-short tranche trade opportunities in general 
and tranche curve trades in particular. 

17/11/2006 Investment Strategies No 28: 
Variance Swaps 

Variance swaps offer straightforward and direct exposure to the volatility of an 
underlying 

10/11/2006 
Investment Strategies Series 
No.27: Euro Fixed Income 
Momentum Strategy 

Momentum-based strategies provide attractive risk-adjusted trading returns in 
European fixed income. 

8/11/2006 Investment Strategy Series No. 
26: Equity Style Rotation 

We evaluate index-based equity style rotation strategies using momentum, 
valuations and macro data in the search for the most robust and profitable rules... 

19/09/2006 Investment Strategies No. 25: 
Momentum in Commodities 

Active momentum-based strategies in commodities offer high returns to risk and 
outperform passive investment in the asset class 

3/8/2006 Investment Strategies No. 24: 
Trading Credit Volatility 

The introduction of a liquid market in credit options has given investors the 
opportunity to trade volatility. By doing so, market participants have at their disposal 
a new strategy that can generate alpha in both volatile and range-bound markets 

31/07/2006 
Investment Strategies No. 23: 
Hedging Inflation with Real 
Assets 

Rising inflation and the focus on pension underfunding are heightening interest in 
real assets, both as a Risk Management for broader market volatility (short-term 
investors) and to preserve purchasing power (long-term investors). 

8/6/2006 
Investment Strategies No. 22: 
Relative Value on Curve vs. 
Butterfly Trades 

We show that slope spreads at the front end of the yield curve are highly correlated 
to fly spreads at the long end of the curve and vice-versa 

19/05/2006 Investment Strategies: No. 21: 
Yield Rotator 

The strategy: Buy the assets with the highest yield pickup per unit of risk against 
those with the lowest 
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5/4/2006 Investment Strategies No. 20: 

Trading Credit Curves II 

Trading credit curves has become part of the standard repertoire for many credit 
investors. We introduce a framework to fully understand the factors impacting the 
P+L in curve trading. 

5/4/2006 Investment Strategies No. 19 
Trading Credit Curves I 

We introduce our framework for understanding the P+L drivers in credit curve 
trades. This first note looks at the theory behind credit curves to set the foundations 
for our analysis. 

28/03/2006 Investment Strategies No. 18: 
Index Linked Gilts Uncovered 

A unique market within the inflation-linked universe. Investors should be aware of 
idiosyncrasies of this market. 

23/03/2006 
Investment Strategies No. 17: 
JPMorgan FX Hedging 
Framework 

An intuitive, fundamental approach to analyzing medium-term currency risk across 
developed and emerging markets 

17/03/2006 
Investment Strategies No. 16: 
Bonds, Bubbles and Black 
Holes 

We use the dividend discount model as a framework for considering the relative 
valuation of index linked bonds against equity. Our analysis suggests the stock-bond 
real-yield ratio should be around 2:1, at equilibrium. In the UK this yield ratio... 

9/3/2006 
Investment Strategies No. 15: A 
cross-market bond carry 
strategy 

The strategy: buy the 10-year where carry is highest, against the market where it is 
lowest, currency Risk Management 

8/2/2006 
Investment Strategies No. 14: 
Exploiting Cross-Market 
Momentum 

We propose an innovative strategy that achieves high returns with low risk by 
exploiting momentum in relative returns across a wide set of asset classes. 

1/2/2006 
Investment Strategies No. 13: 
Valuing cross-market yield 
spreads 

Yields spreads and term premia across the curve have virtually disappeared in 
many markets as curves flattened. But the existence of still large yield spreads 
across countries points to large cross-market risk premia that one should try to 
exploit. 

23/02/2005 Investment Strategies No. 12: 
JPMorgan Carry-to-Risk Primer 

A simple, systematic and intuitive approach to analyze and invest in emerging 
market currencies. JPMorgan Emerging Market Carry-to-Risk Model provides a 
systematic approach to analyze expected risk-adjusted returns on currency 
positions. 

26/01/2005 
Investment Strategies No. 11: A 
Fair Value Model for US Bonds, 
Credit and Equities 

This fair value model allows investors to translate a view on fundamentals into a 
view on markets 

22/09/2004 
Investment Strategies No. 10: 
JPMorgan's FX and commodity 
Barometer 

JPMorgan's FX & Commodity Barometer is a multi-factor, signaling model for 
currency and metals markets. The model’s chief enhancement over existing 
frameworks is the combination of indicator breadth and flexible weights. 

7/1/2004 Investment Strategies No. 9: 
Which Trade? 

Investors positioning across many markets face the question of which trade best 
expresses a given macro view, such as a change in growth, inflation or central bank 
expectations. 

8/1/2003 
Investment Strategies No.8: 
Alternative LCVI trading 
strategies 

* Trading emerging-market currencies in line with LCVI signals generates very 
attractive returns even after transaction costs, albeit with greater volatility than FX 
CACI * Trading the three most liquid crosses among the G10 according to LCVI... 

1/10/2002 
Investment Strategies No.7: 
Using equities to trade FX: 
Introducing the LCVI 

* Equities playing a bigger role as a driver of markets * LCVI adds the VIX - a 
measure of implied volatility in the equity market -  to the LCPI * The LCVI generates 
higher returns and information ratios for our FX CACI trading basket 
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12/4/2002 

Investment Strategies No.6: A 
Framework for Long-term 
Currency Valuation 

This paper describes a framework for assessing currency valuation from a long-term 
point of view and for producing long-term currency forecasts that are consistent with 
fundamental historical relationships. 

6/3/2002 Investment Strategies No. 5: 
Profiting from Market Signals 

JPMorgan's Bond Barometer tracks four key market drivers: fundamentals, value, 
risk appetite and technical; and combines them into a single, directional signal on 
bonds. 

24/01/2002 
Investment Strategies No. 4: 
FX positioning with JPMorgan's 
exchange rate model 

This paper introduces JPMorgan’s methodology to measure expected Emerging 
Markets currency moves and evaluates trade performance based on such 
measures. 

19/12/2001 
Investment Strategies No. 3: 
New LCPI trading rules - 
Introducing FX CACI 

FXCI returns fell during 2001 as yield differences narrowed. This paper shows that 
combining current accounts with yield differentials enhances returns and resolves 
issues. Shorting risk-appetite trades when LCPI shifts from risk-seeking to neutral... 

6/12/2001 
Investment Strategies No. 2: 
Understanding and trading 
swap spreads 

This paper identifies the key driving factors of swap spreads (yield curve shape, 
budget expectations and risk aversion), and describes profitable trading rules to take 
advantage of the level of swap spreads and their future direction. 

15/11/2001 Investment Strategies No:1: 
Rock-Bottom Spreads 

The Investment Strategies series aims to offer new approaches and methods on 
investing and trading profitably in financial markets. The objective is to explain 
completely the methods and models behind the investment recommendations you 
are receiving... 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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J.P. Morgan Tradable Risk Factor Indices 
 

J.P. Morgan Tradable Risk Factor Indices - Equities               

          
Ticker Index Name JPM Family Launch 

Date 
Strategy 

Type Asset Class Regional 
Focus 

Strategy 
Style 

Risk 
Method Curncy 

ARJPEMU5 Emerging Mkts ARC 15% ER Adaptive Risk 
Control Dec-10 Enhanced 

Beta Equities Emerging 
Mkts Traditional Portfolio 

Level USD 

CIJPCAV2 China A-shares Vol controlled Index 
20% Risk Control Feb-10 Enhanced 

Beta Equities Emerging 
Mkts Traditional Portfolio 

Level HKD 

CIJPCAVC China A-shares Vol controlled Index 
20% Risk Control Feb-10 Enhanced 

Beta Equities Emerging 
Mkts Traditional Portfolio 

Level HKD 

FTJGUSEE US Equity Futures (G) Tracker RollingFutures Aug-09 Access 
Beta Equities Americas Traditional None USD 

FTJGUSSE US Small Cap Equities Futures (G) 
Tracker RollingFutures Aug-09 Access 

Beta Equities Americas Traditional None USD 

FTJPUSEE J.P. Morgan US Equity Futures RollingFutures Jun-09 Access 
Beta Equities Americas Traditional None USD 

FTJMCHEE J.P. Morgan Swiss Equity Futur RollingFutures Jan-12 Access 
Beta Equities EMEA Traditional None CHF 

FTJFDEEE J. P. Morgan German Equity Fut RollingFutures Jan-12 Access 
Beta Equities EMEA Traditional None EUR 

FTJGEUEE European Equity Futures (G) 
Tracker RollingFutures Jun-09 Access 

Beta Equities EMEA Traditional None EUR 

FTJPEUEE European Equity Futures Index RollingFutures Jun-09 Access 
Beta Equities EMEA Traditional None EUR 

RFJPEUEE J.P. Morgan European Equity 
Futures Tracker RollingFutures  

Access 
Beta Equities EMEA Traditional None EUR 

FTJPEPEE J. P. Morgan Pan European Equity 
Futures Tracker RollingFutures Oct-13 Access 

Beta Equities EMEA Traditional None EUR 

FTJGUKEE J.P. Morgan UK Equity Futures (G) 
Tracker RollingFutures  

Access 
Beta Equities EMEA Traditional None GBP 

FTJPUKEE UK Equity Futures Index RollingFutures Jun-09 Access 
Beta Equities EMEA Traditional None GBP 

RFJPUKEE UK Equity Futures Tracker RollingFutures Jun-09 Access 
Beta Equities EMEA Traditional None GBP 

FTJMTREE Turkish Equity Futures Tracker RollingFutures Nov-11 Access 
Beta Equities EMEA Traditional None TRY 

FTJMAUEE J.P. Morgan Australian Equity 
Futures Tracker RollingFutures  

Access 
Beta Equities Asia Traditional None AUD 

FTJMHKEE J.P. Morgan Hong Kong Equity 
Futures Tracker RollingFutures   Access 

Beta Equities Asia Traditional None HKD 

FTJGJPEE Japanese Equity Futures (G) 
Tracker RollingFutures Jun-09 Access 

Beta Equities Asia Traditional None JPY 

FTJPJPEE Japanese Equity Futures Index RollingFutures Jun-09 Access 
Beta Equities Asia Traditional None JPY 

RFJPJPEE Japanese Equity Futures Tracker RollingFutures Jun-09 Access 
Beta Equities Asia Traditional None JPY 

FTJMSKEE J.P. Morgan Korean Equity Futures 
Tracker RollingFutures   Access 

Beta Equities Asia Traditional None KRW 

FTJMSGEE J.P. Morgan Singaporean Equity 
Futures Tracker RollingFutures  

Access 
Beta Equities Asia Traditional None SGD 

CIJPIDEE J.P. Morgan Indian Equity Futures 
Tracker RollingFutures Aug-11 Access 

Beta Equities Emerging 
Mkts Traditional None USD 

FTJFEMUE J. P. Morgan Emerging Mkts Futures 
Tracker (G) RollingFutures  

Access 
Beta Equities Emerging 

Mkts Traditional None USD 

FTJMEMUE EM Futures Tracker RollingFutures May-12 Access 
Beta Equities Emerging 

Mkts Traditional None USD 

FTJPEAEE J. P. Morgan International Equity 
Futures Tracker RollingFutures Oct-13 Access 

Beta Equities Multi 
Region Traditional None USD 
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YAJPEBE8 JPM Equity Alpha 8 Broad EUR YieldAlpha Aug-08 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing EUR 

YAJPEEU2 Equity Alpha EUR YieldAlpha Aug-06 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing EUR 

YAJPEEU8 Equity Alpha 8 EUR YieldAlpha Aug-06 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing EUR 

YAJPEBJ8 Equity Alpha 8 Bunsan JPY YieldAlpha Aug-07 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing JPY 

YAJPEJP2 JPM Equity Alpha JPY Index YieldAlpha Aug-08 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing JPY 

YAJPEJP8 JPM Equity Alpha 8 JPY Index YieldAlpha Aug-08 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing JPY 

YAJPEBUX Equity Alpha Broad X (USD) YieldAlpha Aug-08 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing USD 

YAJPEUS2 JPM Equity Alpha US Index YieldAlpha Aug-08 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing USD 

YAJPEUS8 Equity Alpha 8 USD YieldAlpha Aug-06 Alternative 
Beta Equities Multi 

Region Carry Risk 
Optimizing USD 

CIJPKAE5 Asia Pacific Equity Rotator Index 
(KRW) Aero Jan-12 Alternative 

Beta Equities Asia Momentum Portfolio 
Level KRW 

CIJPAER5 Asia Pacific Equity Rotator Index 
(USD) Aero Aug-11 Alternative 

Beta Equities Asia Momentum Portfolio 
Level USD 

CIJPAERO J.P. Morgan Asia-Pacific Equity 
Rotator 10 Index Aero  

Alternative 
Beta Equities Asia Momentum Portfolio 

Level USD 

CIJPAEB5 Asian EM Equity Rotator 5 Aero Mar-12 Alternative 
Beta Equities Emerging 

Mkts Momentum Portfolio 
Level USD 

AIJPMEUU Equity Momentum US AIS Nov-09 Alternative 
Beta Equities Americas Momentum None USD 

AIJPMEEE Equity Momentum Europe AIS Nov-09 Alternative 
Beta Equities EMEA Momentum None EUR 

AIJPMEJJ Equity Momentum Japan AIS Nov-09 Alternative 
Beta Equities Asia Momentum None JPY 

SEJPML3S Momentum (SEK) Index Efficiente Apr-11 Multi Type Equities Multi 
Region Momentum None SEK 

JPMZKRMO J.P.Morgan Kronos Index - 
Momentum Kronos Jun-13 Alternative 

Beta Equities Americas Momentum None USD 

JPUSSCTE J.P.Morgan U.S. Sector Rotator SectorRotator Jun-13 Alternative 
Beta Equities Americas Momentum None USD 

JPUSSC5E J.P.Morgan U.S. Sector Rotator 5% 
Vol Budget SectorRotator Jun-13 Alternative 

Beta Equities Americas Momentum Portfolio 
Level USD 

AIJPCE1U Equity Value Carry USD AIS Nov-09 Alternative 
Beta Equities Americas Value None USD 

AIJPCE2U Equity Small Cap Carry US AIS Nov-09 Alternative 
Beta Equities Americas Value None USD 

AIJPSR1U Mean Reversion US AIS Nov-09 Alternative 
Beta Equities Americas Value None USD 

AIJPSR1E Mean Reversion Europe AIS Nov-09 Alternative 
Beta Equities EMEA Value None EUR 

AIJPSR1J Mean Reversion Japan AIS Nov-09 Alternative 
Beta Equities Asia Value None JPY 

EQJPG2MU Equity Edge Global Emerging 
Market (USD) Equity Edge Jan-11 Alternative 

Beta Equities Emerging 
Mkts Value None USD 

EQJPA1MU Equity Edge Asia Equity Edge  Oct-10 Alternative 
Beta Equities Asia Value None USD 

EQJPG1LU Global Large Cap Equity Edge  Oct-10 Alternative 
Beta Equities Multi 

Region Value None USD 

JPMZKRMR J.P.Morgan Kronos Index - Mean 
Reversion Kronos Jun-13 Alternative 

Beta Equities Americas Value None USD 

AIJPSV1U Satellite Short Volatility US AIS Nov-09 Alternative 
Beta Equities Americas Volatility None USD 

JPMZMHEN J.P.Morgan Macro Hedge Enhanced Macro Hedge Dec-11 Multi Type Equities Americas Volatility None USD 
JPMZMHLO Macrohedge Systematic Long Index Macro Hedge Mar-11 Multi Type Equities Americas Volatility None USD 
JPMZMHUS Macrohedge Long-Short US Macro Hedge Aug-10 Multi Type Equities Americas Volatility None USD 
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JPMZMHVC J.P. Morgan Macrohedge US Curve Macro Hedge Dec-11 Multi Type Equities Americas Volatility None USD 
JPUSSTSL JPM Strategic Volatility Long Macro Hedge Feb-12 Multi Type Equities Americas Volatility None USD 
JPUSSTVD Strategic Volatility Dynamic Beta Macro Hedge Aug-12 Multi Type Equities Americas Volatility None USD 
JPUSSTVL JPM Strategic Volatility Index Macro Hedge Jun-11 Multi Type Equities Americas Volatility None USD 
JPUSSTLF Strat Vol Long Flat Macro Hedge May-11 Multi Type Equities Americas Volatility None USD 

JPMZVPUS J.P.Morgan Macro Hedge Vepo US Macro Hedge Apr-12 Multi Type Equities Americas Volatility Portfolio 
Level USD 

JPMZVTU3 Macro Hedge Vega Target 3% Macro Hedge Jun-13 Multi Type Equities Americas Volatility Portfolio 
Level USD 

JPMZMHCE J.P. Morgan Macrohedge Curve 
(EUR) Index Macro Hedge   Multi Type Equities Multi 

Region Volatility None EUR 

JPMZMHH6 JP Morgan Macrohedge Hybrid Risk 
Control 6 Macro Hedge Aug-11 Multi Type Equities Multi 

Region Volatility None EUR 

JPMZMHHT J.P. Morgan Macrohedge Dual TR 
Index Macro Hedge Mar-12 Multi Type Equities Multi 

Region Volatility None EUR 

JPMZVEC5 J.P. Morgan Macrohedge Curve VT 
5% (EUR) Macro Hedge Jul-13 Multi Type Equities Multi 

Region Volatility None EUR 

JPMZMHCL J.P.Morgan Macro Curve LO USD Macro Hedge Jun-12 Multi Type Equities Multi 
Region Volatility None USD 

JPMZMHCO J.P.Morgan Macro Curve LO Euro Macro Hedge Jun-12 Multi Type Equities Multi 
Region Volatility None USD 

JPMZMHCU J.P. Morgan Macrohedge Curve Macro Hedge Feb-12 Multi Type Equities Multi 
Region Volatility None USD 

JPMZMHE6 JP Morgan Macrohedge Enhanced 
Risk Control 6 US Macro Hedge Mar-11 Multi Type Equities Multi 

Region Volatility None USD 

JPMZMHHG J.P.Morgan Macrohedge Dual 
Enhanced Macro Hedge Mar-11 Multi Type Equities Multi 

Region Volatility None USD 

JPMZMHHY Macrohedge Hybrid Macro Hedge Sep-10 Multi Type Equities Multi 
Region Volatility None USD 

JPMZVTC5 J.P. Morgan Macrohedge Curve VT 
5% (USD) Macro Hedge Jul-13 Multi Type Equities Multi 

Region Volatility None USD 

JPMZVTD3 J.P. Morgan Macrohedge Dual VT 
3% (USD) Macro Hedge Jul-13 Multi Type Equities Multi 

Region Volatility None USD 

JPMZVTD4 J.P. Morgan Macrohedge Dual VT 
4% (USD) Macro Hedge Jul-13 Multi Type Equities Multi 

Region Volatility None USD 

JPTC80UL TECH 80 Long Index Tech 80 Aug-13 Hedging Equities Americas Volatility Option-
based USD 

JPTC80UE TECH US 80 Index Tech 80 Aug-13 Hedging Equities Americas Volatility Option-
based USD 

JPTC80UL TECH US 80 Long Index Tech 80 Aug-13 Hedging Equities Americas Volatility Option-
based USD 

JPTC90UE TECH US 90 Index Tech 80 Aug-13 Hedging Equities Americas Volatility Option-
based USD 

JPTC90UL TECH US 90 Long Index Tech 80 Aug-13 Hedging Equities Americas Volatility Option-
based USD 

JPMZSSUS 
Systematic Short Strangle European 
Equity Delta Hedge Mechanism 
Index 

Volatility 
Strategies Jun-13 Alternative 

Beta Equities Americas Volatility Portfolio 
Level USD 

JPMZSSEU 
Systematic Short Strangle European 
Equity Delta Hedge Mechanism 
Index 

Volatility 
Strategies Jan-13 Alternative 

Beta Equities EMEA Volatility Portfolio 
Level USD 

JPVOLUSA Volemont-US Equities Volemont May-13 Alternative 
Beta Equities Americas Volatility Portfolio 

Level USD 

JPVOLEMA Volemont Asia Strategy Volemont Jun-12 Alternative 
Beta Equities Asia Volatility Portfolio 

Level USD 

JPVOLEEG Volemont Global Strategy (EUR) Volemont Dec-12 Alternative 
Beta Equities Multi 

Region Volatility Portfolio 
Level EUR 

JPVOLEME J.P. Morgan Volemont (EUR) Volemont Nov-11 Alternative 
Beta Equities Multi 

Region Volatility Portfolio 
Level EUR 

JPVOLEM6 J.P. Morgan Volemont Risk Cont Volemont Apr-12 Alternative 
Beta Equities Multi 

Region Volatility Portfolio 
Level USD 
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JPVOLEMG Volemont Global Strategy Volemont Dec-12 Alternative 
Beta Equities Multi 

Region Volatility Portfolio 
Level USD 

JPVOLEMO J.P. Morgan Volemont Index Volemont Nov-11 Alternative 
Beta Equities Multi 

Region Volatility Portfolio 
Level USD 

JPVOLGU2 J.P. Morgan Volemont Global Series 
2 Volemont  

Alternative 
Beta Equities Multi 

Region Volatility Portfolio 
Level USD 

JPVOLGU3 J.P. Morgan Volemont Global Series 
3 Volemont   Alternative 

Beta Equities Multi 
Region Volatility Portfolio 

Level USD 

YAJPVUS2 JPM Variance Alpha USD Index YieldAlpha Aug-08 Alternative 
Beta Equities Americas Volatility Risk 

Optimizing USD 

YAJPVUS8 Variance Alpha 8 USD YieldAlpha Aug-06 Alternative 
Beta Equities Americas Volatility Risk 

Optimizing USD 

JPMZKRNS J.P.Morgan Kronos Index Kronos Jun-13 Alternative 
Beta Equities Americas Multi Factor None USD 

          
          
J.P. Morgan Tradable Risk Factor Indices - Rates and Credit             

          
Ticker Index Name JPM Family Launch 

Date 
Strategy 

Type Asset Class Regional 
Focus 

Strategy 
Style 

Risk 
Method Curncy 

JPVUC210 2s10s Curve Index  Curve tracker Jun-11 Access 
Beta Rates Americas Traditional None USD 

JPVEC2XU EUR 2s-10s Curve Index EUR Curve Jan-00 Access 
Beta Rates EMEA Traditional None USD 

JPFSIEUR European Funding Spread Index 
(FSI) FSI Jan-12 Multi Type Rates EMEA Traditional None EUR 

JPFSMUEU FSI - Multiplicative in EUR  FSI Feb-12 Multi Type Rates EMEA Traditional None EUR 
JPFSMUUS FSI - Multiplicative in USD  FSI Feb-12 Multi Type Rates EMEA Traditional None USD 

JPMGEMLC EMU Government Bond Index (GBI) GBI  Jan-01 Access 
Beta Rates EMEA Traditional None EUR 

JHDCGBIG Global Government Bond Index 
(GBI) GBI  Dec-89 Access 

Beta Rates Multi 
Region Traditional None USD 

JPINUS03 3Y USCPI ZC Swap Tracker in USD Inflation Swap  
Trackers 

Access 
Beta Rates Americas Traditional None USD 

JPINUS05 5Y USCPI ZC Swap Tracker in USD Inflation Swap  
Trackers 

Access 
Beta Rates Americas Traditional None USD 

JPINUS07 7Y USCPI ZC Swap Tracker in USD Inflation Swap  
Trackers 

Access 
Beta Rates Americas Traditional None USD 

JPINUS10 10Y USCPI ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates Americas Traditional None USD 

JPINUS20 20Y USCPI ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates Americas Traditional None USD 

JPINEU03 3Y HICPxT ZC Swap Tracker in 
EUR 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None EUR 

JPINEU05 5Y HICPxT ZC Swap Tracker in 
EUR 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None EUR 

JPINEU07 7Y HICPxT ZC Swap Tracker in 
EUR 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None EUR 

JPINEU10 10Y HICPxT ZC Swap Tracker in 
EUR 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None EUR 

JPINEU20 20Y HICPxT ZC Swap Tracker in 
EUR 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None EUR 

JPINGB03 3Y UKRPI ZC Swap Tracker in GBP Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None GBP 

JPINGB05 5Y UKRPI ZC Swap Tracker in GBP Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None GBP 

JPINGB07 7Y UKRPI ZC Swap Tracker in GBP Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None GBP 

JPINGB10 10Y UKRPI ZC Swap Tracker in 
GBP 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None GBP 
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JPINGB20 20Y UKRPI ZC Swap Tracker in 
GBP 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None GBP 

JPINE03U 3Y HICPxT ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPINE05U 5Y HICPxT ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPINE07U 7Y HICPxT ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPINE10U 10Y HICPxT ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPINE20U 20Y HICPxT ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPING03U 3Y UKRPI ZC Swap Tracker in USD Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPING05U 5Y UKRPI ZC Swap Tracker in USD Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPING07U 7Y UKRPI ZC Swap Tracker in USD Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPING10U 10Y UKRPI ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JPING20U 20Y UKRPI ZC Swap Tracker in 
USD 

Inflation Swap  
Trackers 

Access 
Beta Rates EMEA Traditional None USD 

JFLFBA1C Canadian Bank Bill 1st contract in 
CAD RollingFutures  

Access 
Beta Rates Americas Traditional None CAD 

JFLFBA2C Canadian Bank Bill 2nd contract in 
CAD RollingFutures   Access 

Beta Rates Americas Traditional None CAD 

JFLFBA3C Canadian Bank Bill 3rd contract in 
CAD RollingFutures  

Access 
Beta Rates Americas Traditional None CAD 

JFLFBA4C Canadian Bank Bill 4th contract in 
CAD RollingFutures   Access 

Beta Rates Americas Traditional None CAD 

JFLFBA5C Canadian Bank Bill 5th contract in 
CAD RollingFutures  

Access 
Beta Rates Americas Traditional None CAD 

JFLFBA6C Canadian Bank Bill 6th contract in 
CAD RollingFutures   Access 

Beta Rates Americas Traditional None CAD 

JFLFBA7C Canadian Bank Bill 7th contract in 
CAD RollingFutures  

Access 
Beta Rates Americas Traditional None CAD 

JFLFBA8C Canadian Bank Bill 8th contract in 
CAD RollingFutures   Access 

Beta Rates Americas Traditional None CAD 

JFLFUS1E Eurodollar 1st contract in EUR RollingFutures  
Access 

Beta Rates Americas Traditional None EUR 

JFLFUS2E Eurodollar 2nd contract in EUR RollingFutures   Access 
Beta Rates Americas Traditional None EUR 

JFLFUS3E Eurodollar 3rd contract in EUR RollingFutures  
Access 

Beta Rates Americas Traditional None EUR 

JFLFUS4E Eurodollar 4th contract in EUR RollingFutures   Access 
Beta Rates Americas Traditional None EUR 

JFLFUS5E Eurodollar 5th contract in EUR RollingFutures  
Access 

Beta Rates Americas Traditional None EUR 

JFLFUS6E Eurodollar 6th contract in EUR RollingFutures   Access 
Beta Rates Americas Traditional None EUR 

JFLFUS7E Eurodollar 7th contract in EUR RollingFutures  
Access 

Beta Rates Americas Traditional None EUR 

JFLFUS8E Eurodollar 8th contract in EUR RollingFutures   Access 
Beta Rates Americas Traditional None EUR 

JFBU10GB 10Y Note in GBP RollingFutures  
Access 

Beta Rates Americas Traditional None GBP 

FTJFUTBE JPM US 30Y Treasury Bond Futures 
Tracker (G) RollingFutures   Access 

Beta Rates Americas Traditional None USD 

FTJMUTBE JPM US 30Y Treasury Bond Futur RollingFutures Jan-12 Access 
Beta Rates Americas Traditional None USD 

FTJPUS2E J.P. Morgan 2-Year US Treasury 
notes Futures Tracker (Net) RollingFutures   Access 

Beta Rates Americas Traditional None USD 

RFJGUSBE US Treasury Note Futures (G) 
Tracker RollingFutures Jun-09 Access 

Beta Rates Americas Traditional None USD 
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RFJGUSME US Money Market Futures (G) 
Tracker RollingFutures Aug-09 Access 

Beta Rates Americas Traditional None USD 

RFJPUS2E US 2Y Treasury Note Futures 
Tracker RollingFutures May-09 Access 

Beta Rates Americas Traditional None USD 

RFJPUSBE 10Y US Treasury Note Futures 
Tracker RollingFutures Jun-09 Access 

Beta Rates Americas Traditional None USD 

JFLFUS1U Eurodollar 1st contract in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JFLFUS2U Eurodollar 2nd contract in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JFLFUS3U Eurodollar 3rd contract in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JFLFUS4U Eurodollar 4th contract in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JFLFUS5U Eurodollar 5th contract in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JFLFUS6U Eurodollar 6th contract in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JFLFUS7U Eurodollar 7th contract in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JFLFUS8U Eurodollar 8th contract in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JFLFBA1U Canadian Bank Bill 1st contract in 
USD RollingFutures  

Access 
Beta Rates Americas Traditional None USD 

JFLFBA2U Canadian Bank Bill 2nd contract in 
USD RollingFutures   Access 

Beta Rates Americas Traditional None USD 

JFLFBA3U Canadian Bank Bill 3rd contract in 
USD RollingFutures  

Access 
Beta Rates Americas Traditional None USD 

JFLFBA4U Canadian Bank Bill 4th contract in 
USD RollingFutures   Access 

Beta Rates Americas Traditional None USD 

JFLFBA5U Canadian Bank Bill 5th contract in 
USD RollingFutures  

Access 
Beta Rates Americas Traditional None USD 

JFLFBA6U Canadian Bank Bill 6th contract in 
USD RollingFutures   Access 

Beta Rates Americas Traditional None USD 

JFLFBA7U Canadian Bank Bill 7th contract in 
USD RollingFutures  

Access 
Beta Rates Americas Traditional None USD 

JFLFBA8U Canadian Bank Bill 8th contract in 
USD RollingFutures   Access 

Beta Rates Americas Traditional None USD 

JFBU2USD 2Y Note in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JFBU5USD 5Y Note in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JFBU10US 10Y Note in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JFBULBUS Long Bond in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JFBUSBUS Ultralong in USD RollingFutures  
Access 

Beta Rates Americas Traditional None USD 

JPVU0210 USD 2s10s Curve Index in USD RollingFutures   Access 
Beta Rates Americas Traditional None USD 

JPVUC210 USD 2s10s Curve Index, Vol 
Capped,  in USD RollingFutures  

Enhanced 
Beta Rates Americas Traditional Risk 

Budgeting USD 

FTJMCHBE J.P. Morgan Swiss Bonds Futures 
Tracker RollingFutures   Access 

Beta Rates EMEA Traditional None CHF 

JFLFSF1S Euroswissie 1st contract in CHF RollingFutures  
Access 

Beta Rates EMEA Traditional None CHF 

JFLFSF2S Euroswissie 2nd contract in CHF RollingFutures   Access 
Beta Rates EMEA Traditional None CHF 

JFLFSF3S Euroswissie 3rd contract in CHF RollingFutures  
Access 

Beta Rates EMEA Traditional None CHF 

JFLFSF4S Euroswissie 4th contract in CHF RollingFutures   Access 
Beta Rates EMEA Traditional None CHF 

JFLFSF5S Euroswissie 5th contract in CHF RollingFutures  
Access 

Beta Rates EMEA Traditional None CHF 
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JFLFSF6S Euroswissie 6th contract in CHF RollingFutures   Access 
Beta Rates EMEA Traditional None CHF 

JFLFSF7S Euroswissie 7th contract in CHF RollingFutures  
Access 

Beta Rates EMEA Traditional None CHF 

JFLFSF8S Euroswissie 8th contract in CHF RollingFutures   Access 
Beta Rates EMEA Traditional None CHF 

FTJPEU2E J P Morgan Euro Schatz Futures 
Tracker (Net) RollingFutures  

Access 
Beta Rates EMEA Traditional None EUR 

RFJGEUBE Euro Bund Futures (G) Tracker RollingFutures Jun-09 Access 
Beta Rates EMEA Traditional None EUR 

RFJGEUME European Money Market Futures (G) 
Tracker RollingFutures Aug-09 Access 

Beta Rates EMEA Traditional None EUR 

RFJPEU2E Euro Schatz Future (G) RollingFutures May-09 Access 
Beta Rates EMEA Traditional None EUR 

RFJPEUBE Euro Bund Futures Tracker RollingFutures Jun-09 Access 
Beta Rates EMEA Traditional None EUR 

JFLFEU1E Euribor 1st contract in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFLFEU2E Euribor 2nd contract in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

JFLFEU3E Euribor 3rd contract in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFLFEU4E Euribor 4th contract in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

JFLFEU5E Euribor 5th contract in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFLFEU6E Euribor 6th contract in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

JFLFEU7E Euribor 7th contract in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFLFEU8E Euribor 8th contract in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

JFBEDUEU Schatz in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFBEBLEU Bobl in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

JFBERXEU Bund in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFBEBXEU Buxl in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

JFBEOTEU French OAT in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JFBEBPEU Italian BP in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

J10EGBEU 10Y Gilt in EUR RollingFutures   Access 
Beta Rates EMEA Traditional None EUR 

JPVE0210 EUR 2s10s Curve Index in EUR RollingFutures  
Access 

Beta Rates EMEA Traditional None EUR 

RFJPUKBE UK GILT Futures Tracker RollingFutures Jun-09 Access 
Beta Rates EMEA Traditional None GBP 

JFLFGB1G Short Sterling 1st contract in GBP RollingFutures  
Access 

Beta Rates EMEA Traditional None GBP 

JFLFGB2G Short Sterling 2nd contract in GBP RollingFutures   Access 
Beta Rates EMEA Traditional None GBP 

JFLFGB3G Short Sterling 3rd contract in GBP RollingFutures  
Access 

Beta Rates EMEA Traditional None GBP 

JFLFGB4G Short Sterling 4th contract in GBP RollingFutures   Access 
Beta Rates EMEA Traditional None GBP 

JFLFGB5G Short Sterling 5th contract in GBP RollingFutures  
Access 

Beta Rates EMEA Traditional None GBP 

JFLFGB6G Short Sterling 6th contract in GBP RollingFutures   Access 
Beta Rates EMEA Traditional None GBP 

JFLFGB7G Short Sterling 7th contract in GBP RollingFutures  
Access 

Beta Rates EMEA Traditional None GBP 
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JFLFGB8G Short Sterling 8th contract in GBP RollingFutures   Access 
Beta Rates EMEA Traditional None GBP 

J10EGBUK 10Y Gilt in GBP RollingFutures  
Access 

Beta Rates EMEA Traditional None GBP 

JFLFEU1U Euribor 1st contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFEU2U Euribor 2nd contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFEU3U Euribor 3rd contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFEU4U Euribor 4th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFEU5U Euribor 5th contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFEU6U Euribor 6th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFEU7U Euribor 7th contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFEU8U Euribor 8th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFGB1U Short Sterling 1st contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFGB2U Short Sterling 2nd contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFGB3U Short Sterling 3rd contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFGB4U Short Sterling 4th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFGB5U Short Sterling 5th contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFGB6U Short Sterling 6th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFGB7U Short Sterling 7th contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFGB8U Short Sterling 8th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFSF1U Euroswissie 1st contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFSF2U Euroswissie 2nd contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFSF3U Euroswissie 3rd contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFSF4U Euroswissie 4th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFSF5U Euroswissie 5th contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFSF6U Euroswissie 6th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFLFSF7U Euroswissie 7th contract in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFLFSF8U Euroswissie 8th contract in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFBEDUUS Schatz in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFBEBLUS Bobl in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFBERXUS Bund in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFBEBXUS Buxl in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JFBEOTUS French OAT in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JFBEBPUS Italian BP in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 
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J10EGBUS 10Y Gilt in USD RollingFutures   Access 
Beta Rates EMEA Traditional None USD 

JPVEU210 EUR 2s10s Curve Index in USD RollingFutures  
Access 

Beta Rates EMEA Traditional None USD 

JPVEC210 EUR 2s10s Curve Index, Vol 
Capped,  in EUR RollingFutures   Enhanced 

Beta Rates EMEA Traditional Risk 
Budgeting EUR 

JPVEC2XU EUR 2s10s Curve Index, Vol 
Capped,  in USD RollingFutures  

Enhanced 
Beta Rates EMEA Traditional Risk 

Budgeting USD 

JFLFAU1A Aussie Bank Bills 1st contract in 
AUD RollingFutures   Access 

Beta Rates Asia Traditional None AUD 

JFLFAU2A Aussie Bank Bills 2nd contract in 
AUD RollingFutures  

Access 
Beta Rates Asia Traditional None AUD 

JFLFAU3A Aussie Bank Bills 3rd contract in 
AUD RollingFutures   Access 

Beta Rates Asia Traditional None AUD 

JFLFAU4A Aussie Bank Bills 4th contract in 
AUD RollingFutures  

Access 
Beta Rates Asia Traditional None AUD 

JFLFAU5A Aussie Bank Bills 5th contract in 
AUD RollingFutures   Access 

Beta Rates Asia Traditional None AUD 

JFLFAU6A Aussie Bank Bills 6th contract in 
AUD RollingFutures  

Access 
Beta Rates Asia Traditional None AUD 

JFLFAU7A Aussie Bank Bills 7th contract in 
AUD RollingFutures   Access 

Beta Rates Asia Traditional None AUD 

JFLFAU8A Aussie Bank Bills 8th contract in 
AUD RollingFutures  

Access 
Beta Rates Asia Traditional None AUD 

J10EAUAU Aussie 10Y Note in AUD RollingFutures   Access 
Beta Rates Asia Traditional None AUD 

RFJGJPBE Japanese Government Bond 
Futures (G) Tracker RollingFutures Jun-09 Access 

Beta Rates Asia Traditional None JPY 

RFJGJPME Japanese Money Market Futures (G) 
Tracker RollingFutures Aug-09 Access 

Beta Rates Asia Traditional None JPY 

RFJPJPBE Japanese Govt Bond Futures 
Tracker RollingFutures Jun-09 Access 

Beta Rates Asia Traditional None JPY 

JFLFJP1J Euroyen 1st contract in JPY RollingFutures   Access 
Beta Rates Asia Traditional None JPY 

JFLFJP2J Euroyen 2nd contract in JPY RollingFutures  
Access 

Beta Rates Asia Traditional None JPY 

JFLFJP3J Euroyen 3rd contract in JPY RollingFutures   Access 
Beta Rates Asia Traditional None JPY 

JFLFJP4J Euroyen 4th contract in JPY RollingFutures  
Access 

Beta Rates Asia Traditional None JPY 

JFLFJP5J Euroyen 5th contract in JPY RollingFutures   Access 
Beta Rates Asia Traditional None JPY 

JFLFJP6J Euroyen 6th contract in JPY RollingFutures  
Access 

Beta Rates Asia Traditional None JPY 

JFLFJP7J Euroyen 7th contract in JPY RollingFutures   Access 
Beta Rates Asia Traditional None JPY 

JFLFJP8J Euroyen 8th contract in JPY RollingFutures  
Access 

Beta Rates Asia Traditional None JPY 

J10EJPJP TSE 10Y JGB's in JPY RollingFutures   Access 
Beta Rates Asia Traditional None JPY 

FTJMSKBE Korean Treasury Bond Futures 
Tracker RollingFutures Jan-12 Access 

Beta Rates Asia Traditional None KRW 

JFLFAU1U Aussie Bank Bills 1st contract in 
USD RollingFutures   Access 

Beta Rates Asia Traditional None USD 

JFLFAU2U Aussie Bank Bills 2nd contract in 
USD RollingFutures  

Access 
Beta Rates Asia Traditional None USD 

JFLFAU3U Aussie Bank Bills 3rd contract in 
USD RollingFutures   Access 

Beta Rates Asia Traditional None USD 

JFLFAU4U Aussie Bank Bills 4th contract in 
USD RollingFutures  

Access 
Beta Rates Asia Traditional None USD 

JFLFAU5U Aussie Bank Bills 5th contract in 
USD RollingFutures   Access 

Beta Rates Asia Traditional None USD 

JFLFAU6U Aussie Bank Bills 6th contract in 
USD RollingFutures  

Access 
Beta Rates Asia Traditional None USD 

141 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

JFLFAU7U Aussie Bank Bills 7th contract in 
USD RollingFutures   Access 

Beta Rates Asia Traditional None USD 

JFLFAU8U Aussie Bank Bills 8th contract in 
USD RollingFutures  

Access 
Beta Rates Asia Traditional None USD 

JFLFJP1U Euroyen 1st contract in USD RollingFutures   Access 
Beta Rates Asia Traditional None USD 

JFLFJP2U Euroyen 2nd contract in USD RollingFutures  
Access 

Beta Rates Asia Traditional None USD 

JFLFJP3U Euroyen 3rd contract in USD RollingFutures   Access 
Beta Rates Asia Traditional None USD 

JFLFJP4U Euroyen 4th contract in USD RollingFutures  
Access 

Beta Rates Asia Traditional None USD 

JFLFJP5U Euroyen 5th contract in USD RollingFutures   Access 
Beta Rates Asia Traditional None USD 

JFLFJP6U Euroyen 6th contract in USD RollingFutures  
Access 

Beta Rates Asia Traditional None USD 

JFLFJP7U Euroyen 7th contract in USD RollingFutures   Access 
Beta Rates Asia Traditional None USD 

JFLFJP8U Euroyen 8th contract in USD RollingFutures  
Access 

Beta Rates Asia Traditional None USD 

J10EUSAU Aussie 10Y Note in USD RollingFutures   Access 
Beta Rates Asia Traditional None USD 

J10EUSJP TSE 10Y JGB's in USD RollingFutures  
Access 

Beta Rates Asia Traditional None USD 

JPIRUS03 USD 3Y Swap in USD Swap Trackers   Access 
Beta Rates Americas Traditional None USD 

JPIRUS05 USD 5Y Swap in USD Swap Trackers  
Access 

Beta Rates Americas Traditional None USD 

JPIRUS07 USD 7Y Swap in USD Swap Trackers   Access 
Beta Rates Americas Traditional None USD 

JPIRUS10 USD 10Y Swap in USD Swap Trackers  
Access 

Beta Rates Americas Traditional None USD 

JPIRUS20 USD 20Y Swap in USD Swap Trackers   Access 
Beta Rates Americas Traditional None USD 

JPIRCH03 CHF 3Y Swap in CHF Swap Trackers  
Access 

Beta Rates EMEA Traditional None CHF 

JPIRCH05 CHF 5Y Swap in CHF Swap Trackers   Access 
Beta Rates EMEA Traditional None CHF 

JPIRCH07 CHF 7Y Swap in CHF Swap Trackers  
Access 

Beta Rates EMEA Traditional None CHF 

JPIRCH10 CHF 10Y Swap in CHF Swap Trackers   Access 
Beta Rates EMEA Traditional None CHF 

JPIRCH20 CHF 20Y Swap in CHF Swap Trackers  
Access 

Beta Rates EMEA Traditional None CHF 

JPIRDK03 DKK 3Y Swap in DKK Swap Trackers   Access 
Beta Rates EMEA Traditional None DKK 

JPIRDK05 DKK 5Y Swap in DKK Swap Trackers  
Access 

Beta Rates EMEA Traditional None DKK 

JPIRDK07 DKK 7Y Swap in DKK Swap Trackers   Access 
Beta Rates EMEA Traditional None DKK 

JPIRDK10 DKK 10Y Swap in DKK Swap Trackers  
Access 

Beta Rates EMEA Traditional None DKK 

JPIRDK20 DKK 20Y Swap in DKK Swap Trackers   Access 
Beta Rates EMEA Traditional None DKK 

JPIREU03 EUR 3Y Swap in EUR Swap Trackers  
Access 

Beta Rates EMEA Traditional None EUR 

JPIREU05 EUR 5Y Swap in EUR Swap Trackers   Access 
Beta Rates EMEA Traditional None EUR 

JPIREU07 EUR 7Y Swap in EUR Swap Trackers  
Access 

Beta Rates EMEA Traditional None EUR 

JPIREU10 EUR 10Y Swap in EUR Swap Trackers   Access 
Beta Rates EMEA Traditional None EUR 

JPIREU20 EUR 20Y Swap in EUR Swap Trackers  
Access 

Beta Rates EMEA Traditional None EUR 
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JPIRGB03 GBP 3Y Swap in GBP Swap Trackers   Access 
Beta Rates EMEA Traditional None GBP 

JPIRGB05 GBP 5Y Swap in GBP Swap Trackers  
Access 

Beta Rates EMEA Traditional None GBP 

JPIRGB07 GBP 7Y Swap in GBP Swap Trackers   Access 
Beta Rates EMEA Traditional None GBP 

JPIRGB10 GBP 10Y Swap in GBP Swap Trackers  
Access 

Beta Rates EMEA Traditional None GBP 

JPIRGB20 GBP 20Y Swap in GBP Swap Trackers   Access 
Beta Rates EMEA Traditional None GBP 

JPIRSK03 SEK 3Y Swap in SEK Swap Trackers  
Access 

Beta Rates EMEA Traditional None SEK 

JPIRSK05 SEK 5Y Swap in SEK Swap Trackers   Access 
Beta Rates EMEA Traditional None SEK 

JPIRSK07 SEK 7Y Swap in SEK Swap Trackers  
Access 

Beta Rates EMEA Traditional None SEK 

JPIRSK10 SEK 10Y Swap in SEK Swap Trackers   Access 
Beta Rates EMEA Traditional None SEK 

JPIRSK20 SEK 20Y Swap in SEK Swap Trackers  
Access 

Beta Rates EMEA Traditional None SEK 

JPIRE03U EUR 3Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

JPIRE05U EUR 5Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

JPIRE07U EUR 7Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

JPIRE10U EUR 10Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

JPIRE20U EUR 20Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

JPIRG03U GBP 3Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

JPIRG05U GBP 5Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

JPIRG07U GBP 7Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

JPIRG10U GBP 10Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

JPIRG20U GBP 20Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

CPIRC03U CHF 3Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

CPIRC05U CHF 5Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

CPIRC07U CHF 7Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

CPIRC10U CHF 10Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

CPIRC20U CHF 20Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

DPIRD03U DKK 3Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

DPIRD05U DKK 5Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

DPIRD07U DKK 7Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

DPIRD10U DKK 10Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

DPIRD20U DKK 20Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

SPIRS03U SEK 3Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

SPIRS05U SEK 5Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 
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SPIRS07U SEK 7Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

SPIRS10U SEK 10Y Swap in USD Swap Trackers  
Access 

Beta Rates EMEA Traditional None USD 

SPIRS20U SEK 20Y Swap in USD Swap Trackers   Access 
Beta Rates EMEA Traditional None USD 

JPIRAU03 AUD 3Y Swap in AUD Swap Trackers  
Access 

Beta Rates Asia Traditional None AUD 

JPIRAU05 AUD 5Y Swap in AUD Swap Trackers   Access 
Beta Rates Asia Traditional None AUD 

JPIRAU07 AUD 7Y Swap in AUD Swap Trackers  
Access 

Beta Rates Asia Traditional None AUD 

JPIRAU10 AUD 10Y Swap in AUD Swap Trackers   Access 
Beta Rates Asia Traditional None AUD 

JPIRAU20 AUD 20Y Swap in AUD Swap Trackers  
Access 

Beta Rates Asia Traditional None AUD 

JPIRJY03 JPY 3Y Swap in JPY Swap Trackers   Access 
Beta Rates Asia Traditional None JPY 

JPIRJY05 JPY 5Y Swap in JPY Swap Trackers  
Access 

Beta Rates Asia Traditional None JPY 

JPIRJY07 JPY 7Y Swap in JPY Swap Trackers   Access 
Beta Rates Asia Traditional None JPY 

JPIRJY10 JPY 10Y Swap in JPY Swap Trackers  
Access 

Beta Rates Asia Traditional None JPY 

JPIRJY20 JPY 20Y Swap in JPY Swap Trackers   Access 
Beta Rates Asia Traditional None JPY 

JPIRJ03U JPY 3Y Swap in USD Swap Trackers  
Access 

Beta Rates Asia Traditional None USD 

JPIRJ05U JPY 5Y Swap in USD Swap Trackers   Access 
Beta Rates Asia Traditional None USD 

JPIRJ07U JPY 7Y Swap in USD Swap Trackers  
Access 

Beta Rates Asia Traditional None USD 

JPIRJ10U JPY 10Y Swap in USD Swap Trackers   Access 
Beta Rates Asia Traditional None USD 

JPIRJ20U JPY 20Y Swap in USD Swap Trackers  
Access 

Beta Rates Asia Traditional None USD 

APIRA03U AUD 3Y Swap in USD Swap Trackers   Access 
Beta Rates Asia Traditional None USD 

APIRA05U AUD 5Y Swap in USD Swap Trackers  
Access 

Beta Rates Asia Traditional None USD 

APIRA07U AUD 7Y Swap in USD Swap Trackers   Access 
Beta Rates Asia Traditional None USD 

APIRA10U AUD 10Y Swap in USD Swap Trackers  
Access 

Beta Rates Asia Traditional None USD 

APIRA20U AUD 20Y Swap in USD Swap Trackers   Access 
Beta Rates Asia Traditional None USD 

JVOLE1AE EUR 1Y10Y in EUR Swaption 
Trackers  

Access 
Beta Rates EMEA Traditional None EUR 

JVOLEAAE EUR 10Y10Y in EUR Swaption 
Trackers   Access 

Beta Rates EMEA Traditional None EUR 

JVOLU1AU USD 1Y10Y in USD Swaption 
Trackers  

Access 
Beta Rates EMEA Traditional None USD 

JVOLUAAU USD 10Y10Y in USD Swaption 
Trackers   Access 

Beta Rates EMEA Traditional None USD 

JVOLE1AU EUR 1Y10Y in USD Swaption 
Trackers  

Access 
Beta Rates EMEA Traditional None USD 

JVOLEAAU EUR 10Y10Y in USD Swaption 
Trackers   Access 

Beta Rates EMEA Traditional None USD 

AIJPCB1U Bond 2Y Carry USD AIS Nov-09 Alternative 
Beta Rates Americas Carry None USD 

AIJPCB2U Bond 2Y Long-Short Carry USD AIS Nov-09 Alternative 
Beta Rates Americas Carry None USD 

AIJPCB3U Bond 10Y Carry USD AIS Nov-09 Alternative 
Beta Rates Americas Carry None USD 
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AIJPCB4U Bond 10Y Long-Short Carry USD AIS Nov-09 Alternative 
Beta Rates Americas Carry None USD 

JCMXHUS CarryMAX CarryMAX  Jul-06 Alternative 
Beta Rates Multi 

Region Carry None USD 

JGCTRCBU Govt Bond Carry to Risk (GBCTR) GBCTR May-12 Alternative 
Beta Rates Multi 

Region Carry None USD 

JMPLTUS Pilot Pilot Aug-12 Alternative 
Beta Rates Americas Carry Portfolio 

Level USD 

JMPLTB2U Pilot Basket of 2 Pilot Aug-12 Alternative 
Beta Rates Multi 

Region Carry Portfolio 
Level USD 

YAJPBBE8 Bond Alpha 8 Broad EUR YieldAlpha May-08 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing EUR 

YAJPBEU2 Bond Alpha EUR YieldAlpha Aug-06 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing EUR 

YAJPBEU8 Bond Alpha 8 EUR YieldAlpha Aug-06 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing EUR 

YAJPBBJ8 Bond Alpha 8 Bunsan JPY YieldAlpha Aug-07 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing JPY 

YAJPBJP2 JPM Bond Alpha JPY Index YieldAlpha Aug-08 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing JPY 

YAJPBJP8 JPM Bond Alpha 8 JPY Index YieldAlpha Aug-08 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing JPY 

YAJPBBUX Bond Alpha Broad X (USD) YieldAlpha Aug-08 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing USD 

YAJPBUS2 JPM Bond Alpha US Index YieldAlpha Aug-08 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing USD 

YAJPBUS8 Bond Alpha 8 US YieldAlpha Aug-06 Alternative 
Beta Rates Multi 

Region Carry Risk 
Optimizing USD 

AIJPMMUU Momentum Money Market US AIS Nov-09 Alternative 
Beta Rates Americas Momentum None USD 

AIJPMMEE Momentum Money Market Europe AIS Nov-09 Alternative 
Beta Rates EMEA Momentum None EUR 

AIJPMMJJ Momentum Money Market Japan AIS Nov-09 Alternative 
Beta Rates Asia Momentum None JPY 

JPFSMMEU FSI - Multi.Momentum EUR  FSI Feb-12 Multi Type Rates EMEA Momentum None EUR 

JPFSMMLE FSI - Multi Momentum Long Only 
EUR  FSI Feb-12 Multi Type Rates EMEA Momentum None EUR 

JPFSGMUS FSI - Gemini in USD  FSI Feb-12 Multi Type Rates EMEA Momentum None USD 

JHLXH2US Helix2  - Basket Hedged in USD  Helix Feb-13 Alternative 
Beta Rates Multi 

Region Momentum Portfolio 
Level USD 

JHLXHUS Helix  - Basket Hedged in USD  Helix May-09 Alternative 
Beta Rates Multi 

Region Momentum Portfolio 
Level USD 

JMOMQTO Momentus Quattro in USD  Momentus  Jun-07 Alternative 
Beta Rates Multi 

Region Momentum None USD 

JMOMUUU Momentus Quattro Duo in USD  Momentus  Jun-07 Alternative 
Beta Rates Multi 

Region Momentum None USD 

JMOZFIGU Mozaic Global Rates Mozaic Jul-12 Alpha Rates Multi 
Region Momentum Multi 

Methods USD 

JVOLTS1U SigmaTY in USD - additive SigmaTY Feb-13 Alternative 
Beta Rates Americas Volatility Portfolio 

Level USD 

JVOLTS2U SigmaTY in USD - multiplicative SigmaTY Feb-13 Alternative 
Beta Rates Americas Volatility Portfolio 

Level USD 

JVOLU1AU Swaption Tracker - $1y10y VOLT Sep-12 Access 
Beta Rates Americas Volatility Portfolio 

Level USD 

JVOLB01U Swaption Alpha VOLT Sep-12 Enhanced 
Beta Rates Americas Volatility Portfolio 

Level EUR 

JVOLENSE Swaption VOLT index – no switch VOLT Sep-12 Enhanced 
Beta Rates Americas Volatility Portfolio 

Level EUR 

JPCVTOEU CurveTrader M+ sub EUR Index CurveTrader  Feb-08 Alpha Rates Multi 
Region Multi Factor None EUR 

JPCVHUS Curve Trader H+ USD  CurveTrader  Jan-10 Alpha Rates Multi 
Region Multi Factor None USD 
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JPCVTOUS CurveTrader M+ sub USD Index CurveTrader  Feb-08 Alpha Rates Multi 
Region Multi Factor None USD 

JPCVTUS CurveTrader M+ USD  CurveTrader  Feb-08 Alpha Rates Multi 
Region Multi Factor None USD 

JMSIRRUS Sirrus Sirrus May-12 Alpha Rates Multi 
Region Multi Factor Portfolio 

Level USD 

JCMDCOMP CEMBI Narrow Diversified EMBI Dec-07 Access 
Beta Credit Emerging 

Mkts Traditional None USD 

JPEMCOMP Emerging Mkts Bond Index Plus 
(EMBI+) EMBI Jul-95 Access 

Beta Credit Emerging 
Mkts Traditional None USD 

IBOXHY iBoxx $ Liquid High Yield iBoxx Nov-06 Access 
Beta Credit Multi 

Region Traditional None USD 

ERIXCDIG Markit iTraxx CDX NA Inv Grade 5yr 
Excess Return itraxx Mar-07 Access 

Beta Credit Americas Traditional None USD 

ERINCDHY Markit iTraxx CD NA HighYeild 5yr 
Excess Return itraxx Mar-07 Access 

Beta Credit Americas Traditional None USD 

ERIXITXO Markit iTraxx Europe Crossover 5yr 
Excess Return itraxx Mar-07 Access 

Beta Credit EMEA Traditional None EUR 

ERIXITEU Markit iTraxx Europe Main 5yr 
Excess Return itraxx Mar-07 Access 

Beta Credit EMEA Traditional None EUR 

JCRERCHY Credit NA HY Risk Control Carry Credit Strategy Jan-12 Alternative 
Beta Credit Americas Carry Portfolio 

Level USD 

JCRERCIG Credit NA IG Risk Control Carry Credit Strategy Jan-12 Alternative 
Beta Credit Americas Carry Portfolio 

Level USD 

JCRERCEU Credit Europe Main Risk Control 
Carry Credit Strategy Jan-12 Alternative 

Beta Credit EMEA Carry Portfolio 
Level EUR 

JCRERCXO Credit Europe Crossover Risk 
Control Carry Credit Strategy Jan-12 Alternative 

Beta Credit EMEA Carry Portfolio 
Level EUR 

JCREMOHY Credit NA HY Momentum Credit Strategy Jan-12 Alternative 
Beta Credit Americas Momentum None USD 

JCREMOIG Credit NA IG Momentum Credit Strategy Jan-12 Alternative 
Beta Credit Americas Momentum None USD 

JCREMOEU Credit Europe Main Momentum Credit Strategy Jan-12 Alternative 
Beta Credit EMEA Momentum None EUR 

JCREMOXO Credit Europe Crossover Momentum Credit Strategy Jan-12 Alternative 
Beta Credit EMEA Momentum None EUR 

          
          
          
J.P. Morgan Tradable Risk Factor Indices - Currencies               

          
Ticker Index Name JPM Family Launch 

Date 
Strategy 

Type Asset Class Regional 
Focus 

Strategy 
Style 

Risk 
Method Curncy 

JFBXCADU CAD FX Tracker in USD FX Trackers  
Access 

Beta Currencies Americas Traditional None USD 

JFBXEURU EUR FX Tracker in USD FX Trackers   Access 
Beta Currencies EMEA Traditional None USD 

JFBXGBPU GBP FX tracker in USD FX Trackers  
Access 

Beta Currencies EMEA Traditional None USD 

JFBXCHFU CHF FX Tracker in USD FX Trackers   Access 
Beta Currencies EMEA Traditional None USD 

JFBXJPYU JPY FX Tracker in USD FX Trackers  
Access 

Beta Currencies Asia Traditional None USD 

JFBXAUDU AUD FX Tracker in USD FX Trackers   Access 
Beta Currencies Asia Traditional None USD 

JFBXNZDU NZD FX Tracker in USD FX Trackers  
Access 

Beta Currencies Asia Traditional None USD 

FTJFTRYE J.P. Morgan USDTRY Futures 
Tracker RollingFutures May-12 Access 

Beta Currencies EMEA Traditional None TRY 

RFJPCHCE CHF FX Futures Tracker RollingFutures May-09 Access 
Beta Currencies EMEA Traditional None USD 
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RFJPJPCE JPY/USD FX Futures Index RollingFutures Jun-09 Access 
Beta Currencies Asia Traditional None USD 

RFJPEUCE J.P. Morgan USD FX Futures 
Tracker RollingFutures  

Access 
Beta Currencies Multi 

Region Traditional None USD 

AIJPCF1U G10 FX Carry USD AIS Nov-09 Alternative 
Beta Currencies Multi 

Region Carry None USD 

IFXJAM20 Income Asia 2.0  Income FX Jul-07 Alternative 
Beta Currencies Asia Carry Portfolio 

Level USD 

IFXJAM30 Income Asia 3.0  Income FX Jul-07 Alternative 
Beta Currencies Asia Carry Portfolio 

Level USD 

IFXJEMUS Income EM   Income FX Aug-07 Alternative 
Beta Currencies Emerging 

Mkts Carry Portfolio 
Level USD 

IFXJ2MUS Income FX 2   Income FX Oct-07 Alternative 
Beta Currencies Multi 

Region Carry Portfolio 
Level USD 

IFXJPMUS Income FX   Income FX Jan-06 Alternative 
Beta Currencies Multi 

Region Carry Portfolio 
Level USD 

YAJPFEU2 FX Alpha EUR YieldAlpha Aug-06 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing EUR 

YAJPFEU8 FX Alpha 8 EUR YieldAlpha Aug-06 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing EUR 

YAJPFJP2 JPM FX Alpha JPY Index YieldAlpha Aug-08 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing JPY 

YAJPFJP8 FX Alpha 8 JPY YieldAlpha Aug-06 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing JPY 

YAJPFUS2 JPM FX Alpha US Index YieldAlpha Aug-08 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing USD 

YAJPFUS8 FX Alpha 8 US YieldAlpha Aug-06 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing USD 

YAJPFUSX FX Alpha X (USD) YieldAlpha Aug-08 Alternative 
Beta Currencies Multi 

Region Carry Risk 
Optimizing USD 

AIJPMF3U Momentum FX EURJPY AIS Nov-09 Alternative 
Beta Currencies Americas Momentum None USD 

AIJPMF1U Momentum FX EURUSD AIS Nov-09 Alternative 
Beta Currencies EMEA Momentum None USD 

AIJPMF5U Momentum FX AUDUSD AIS Nov-09 Alternative 
Beta Currencies EMEA Momentum None USD 

AIJPMF6U Momentum FX EURGBP AIS Nov-09 Alternative 
Beta Currencies EMEA Momentum None USD 

AIJPMF2U Momentum FX USDJPY AIS Nov-09 Alternative 
Beta Currencies Asia Momentum None USD 

AIJPMF4U Momentum FX USDCAD AIS Nov-09 Alternative 
Beta Currencies Asia Momentum None USD 

JPVOLFFS FX Futures Volemont Volemont Jun-13 Alternative 
Beta Currencies Multi 

Region Volatility Portfolio 
Level USD 

JPVOLFXS Volemont FX Volemont  Apr-13 Alternative 
Beta Currencies Multi 

Region Volatility Portfolio 
Level USD 

          
          
          
J.P. Morgan Tradable Risk Factor Indices - Commodities               

          
Ticker Index Name JPM Family Launch 

Date 
Strategy 

Type Asset Class Regional 
Focus 

Strategy 
Style 

Risk 
Method Curncy 

JMABRCGA Relative Carry Index Alpha Relative Carry Aug-13 Alpha Commodities Multi 
Region Carry Multi 

Methods USD 

JPVOLBRT Brent Volemont Volemont Jul-13 Alternative 
Beta Commodities Multi 

Region Volatility Portfolio 
Level USD 

JPVOGLVP J.P. Morgan Gold Volatility Premium 
Index 

Volatility 
Strategies Jul-13 Alternative 

Beta Commodities Multi 
Region Volatility Portfolio 

Level USD 

JPVOLWTI WTI Volemont Volemont  Apr-13 Alternative 
Beta Commodities Multi 

Region Volatility Portfolio 
Level USD 

147 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

JMABALOC Commodity Allocator Allocator Apr-13 Alpha Commodities Multi 
Region Multi Factor Portfolio 

Level USD 

JPVOGLVO Gold Volemont Strategy Volemont Mar-13 Alternative 
Beta Commodities Multi 

Region Volatility Portfolio 
Level USD 

JPMZSSGD Systematic Short Strangle Gold ETF 
Delta Hedge Mechanism Index 

Volatility 
Strategies Jan-13 Alternative 

Beta Commodities Multi 
Region Volatility Portfolio 

Level USD 

JMABSSPE Seasonal Spreads Portfolio Seasonal 
Spreads Sep-12 Alpha Commodities Multi 

Region Value Multi 
Methods USD 

JMEBDJST Enhanced Beta Select DJUBS 
Weights Beta Select  Jan-12 Enhanced 

Beta Commodities Multi 
Region Traditional None USD 

JMABDJSE DJUBS Select Alpha Curve Alpha Jan-12 Enhanced 
Beta Commodities Multi 

Region Carry Multi 
Methods USD 

JMABDJF3 DJUBS F3 Alpha Curve Alpha Nov-11 Enhanced 
Beta Commodities Multi 

Region Carry Multi 
Methods USD 

JMAB052E Fast Continuum Technical 
Momentum Nov-10 Alternative 

Beta Commodities Multi 
Region Momentum Multi 

Methods USD 

JMABCCLE WTI Continuum Technical 
Momentum Nov-10 Alternative 

Beta Commodities Multi 
Region Momentum None USD 

CMZSLSTR C-IGAR Sigma C-IGAR Jun-10 Alternative 
Beta Commodities Multi 

Region Momentum None USD 

AIJPCC1U Commodity Carry USD AIS Nov-09 Alternative 
Beta Commodities Multi 

Region Carry None USD 

AIJPMCEU Commodity Momentum Energy AIS Nov-09 Alternative 
Beta Commodities Multi 

Region Momentum None USD 

AIJPMCNU Commodity Momentum Non-Energy AIS Nov-09 Alternative 
Beta Commodities Multi 

Region Momentum None USD 

JCTAADJE Contag Alpha Alternative 
Benchmark Contag May-09 Alpha Commodities Multi 

Region Carry Multi 
Methods USD 

JCTAAFEE Contag Alpha Full Energy Contag  May-09 Alpha Commodities Multi 
Region Carry None USD 

JCTAALEE Contag Alpha Light Energy Contag  May-09 Alpha Commodities Multi 
Region Carry None USD 

JCTABDJT Contag Beta Alternative Benchmark 
TR Contag  May-09 Alternative 

Beta Commodities Multi 
Region Carry Multi 

Methods USD 

JCTABFET Contag Beta Full Energy TR Contag  May-09 Alternative 
Beta Commodities Multi 

Region Carry None USD 

JCTABLET Contag Beta Light Energy TR Contag  May-09 Alternative 
Beta Commodities Multi 

Region Carry None USD 

JCTABDJE Contag Beta Alternative Benchmark Contag May-09 Enhanced 
Beta Commodities Multi 

Region Carry Multi 
Methods USD 

CMDT9CER C-IGAR 9 Conditional Long Short C-IGAR May-09 Alternative 
Beta Commodities Multi 

Region Momentum None USD 

CMDT9SER C-IGAR 9 Long Short C-IGAR May-09 Alternative 
Beta Commodities Multi 

Region Momentum None USD 

CMDT9YER C-IGAR 9 Long Only C-IGAR May-09 Alternative 
Beta Commodities Multi 

Region Momentum None USD 

JCTABFEE Contag Beta Full Energy Contag May-09 Enhanced 
Beta Commodities Multi 

Region Carry Multi 
Methods USD 

JMCXEXTR Commodity Curve Index ex-Front 
Month JPMCCI Jun-08 Enhanced 

Beta Commodities Multi 
Region Traditional None USD 

JMCXEXER Commodity Curve Index ex-Front 
Month JPMCCI Jun-08 Enhanced 

Beta Commodities Multi 
Region Traditional None USD 

CMDTO1ER Optimax Alternative 1 Optimax  May-08 Alternative 
Beta Commodities Multi 

Region Momentum Portfolio 
Level USD 

CMDTOMER Optimax Market-Neutral  Optimax  May-08 Alternative 
Beta Commodities Multi 

Region Momentum Portfolio 
Level USD 

CMDTOPER Optimax Plus  Optimax  May-08 Alternative 
Beta Commodities Multi 

Region Momentum Portfolio 
Level USD 

JMCXER Commodity Curve Index JPMCCI Nov-07 Access 
Beta Commodities Multi 

Region Traditional None USD 

JMCXTR Commodity Curve Index JPMCCI Nov-07 Access 
Beta Commodities Multi 

Region Traditional None USD 
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J.P. Morgan Tradable Risk Factor Indices - Volatilities               

          
Ticker Index Name JPM Family Launch 

Date 
Strategy 

Type Asset Class Regional 
Focus 

Strategy 
Style 

Risk 
Method Curncy 

JPMZMHEN J.P.Morgan Macro Hedge Enhanced Macro Hedge Dec-11 Multi Type Volatilities Americas Carry None USD 
JPMZMHLO Macrohedge Systematic Long Index Macro Hedge Mar-11 Multi Type Volatilities Americas Carry None USD 
JPMZMHLO Macrohedge Systematic Long Index Macro Hedge Mar-11 Multi Type Volatilities Americas Carry None USD 
JPMZMHUS Macrohedge Long-Short US Macro Hedge Aug-10 Multi Type Volatilities Americas Carry None USD 
JPMZMHVC J.P. Morgan Macrohedge US Curve Macro Hedge Dec-11 Multi Type Volatilities Americas Carry None USD 
JPUSSTSL JPM Strategic Volatility Long Macro Hedge Feb-12 Multi Type Volatilities Americas Carry None USD 
JPUSSTVD Strategic Volatility Dynamic Beta Macro Hedge Aug-12 Multi Type Volatilities Americas Carry None USD 
JPUSSTLF Strat Vol Long Flat Macro Hedge May-11 Multi Type Volatilities Americas Carry None USD 

JPMZVPUS J.P.Morgan Macro Hedge Vepo US Macro Hedge Apr-12 Multi Type Volatilities Americas Carry Portfolio 
Level USD 

JPMZVTU3 Macro Hedge Vega Target 3% Macro Hedge Jun-13 Multi Type Volatilities Americas Carry Portfolio 
Level USD 

JPMZMHCE J.P. Morgan Macrohedge Curve 
(EUR) Index Macro Hedge  Multi Type Volatilities Multi 

Region Carry None EUR 

JPMZMHH6 JP Morgan Macrohedge Hybrid Risk 
Control 6 Macro Hedge Aug-11 Multi Type Volatilities Multi 

Region Carry None EUR 

JPMZMHHT J.P. Morgan Macrohedge Dual TR 
Index Macro Hedge Mar-12 Multi Type Volatilities Multi 

Region Carry None EUR 

JPMZVEC5 J.P. Morgan Macrohedge Curve VT 
5% (EUR) Macro Hedge Jul-13 Multi Type Volatilities Multi 

Region Carry None EUR 

JPMZMHCL J.P.Morgan Macro Curve LO USD Macro Hedge Jun-12 Multi Type Volatilities Multi 
Region Carry None USD 

JPMZMHCO J.P.Morgan Macro Curve LO Euro Macro Hedge Jun-12 Multi Type Volatilities Multi 
Region Carry None USD 

JPMZMHCU J.P. Morgan Macrohedge Curve Macro Hedge Feb-12 Multi Type Volatilities Multi 
Region Carry None USD 

JPMZMHE6 JP Morgan Macrohedge Enhanced 
Risk Control 6 US Macro Hedge Mar-11 Multi Type Volatilities Multi 

Region Carry None USD 

JPMZMHHG J.P.Morgan Macrohedge Dual 
Enhanced Macro Hedge Mar-11 Multi Type Volatilities Multi 

Region Carry None USD 

JPMZMHHY Macrohedge Hybrid Macro Hedge Sep-10 Multi Type Volatilities Multi 
Region Carry None USD 

JPMZVTC5 J.P. Morgan Macrohedge Curve VT 
5% (USD) Macro Hedge Jul-13 Multi Type Volatilities Multi 

Region Carry None USD 

JPMZVTD3 J.P. Morgan Macrohedge Dual VT 
3% (USD) Macro Hedge Jul-13 Multi Type Volatilities Multi 

Region Carry None USD 

JPMZVTD4 J.P. Morgan Macrohedge Dual VT 
4% (USD) Macro Hedge Jul-13 Multi Type Volatilities Multi 

Region Carry None USD 

JPMZSSUS Systematic Short Strangle US Equity 
Index Delta Hedged 

Volatility 
Strategies Jun-13 Alternative 

Beta Volatilities Americas Carry Portfolio 
Level USD 

JPMZSSEU 
Systematic Short Strangle European 
Equity Delta Hedge Mechanism 
Index 

Volatility 
Strategies Jan-13 Alternative 

Beta Volatilities EMEA Carry Portfolio 
Level USD 

JPMZSSGD Systematic Short Strangle Gold ETF 
Delta Hedge Mechanism Index 

Volatility 
Strategies Jan-13 Alternative 

Beta Volatilities Multi 
Region Carry Portfolio 

Level USD 

JPVOGLVP J.P. Morgan Gold Volatility Premium 
Index 

Volatility 
Strategies Jul-13 Alternative 

Beta Volatilities Multi 
Region Carry Portfolio 

Level USD 

JPVOLUSA Volemont-US Equities Volemont May-13 Alternative 
Beta Volatilities Americas Carry Portfolio 

Level USD 

JPVOLEMA Volemont Asia Strategy Volemont Jun-12 Alternative 
Beta Volatilities Asia Carry Portfolio 

Level USD 

JPVOLEEG Volemont Global Strategy (EUR) Volemont Dec-12 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level EUR 

JPVOLEME J.P. Morgan Volemont (EUR) Volemont Nov-11 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level EUR 
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JPVOGLVO Gold Volemont Strategy Volemont Mar-13 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLBRT Brent Volemont Volemont Jul-13 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLEM6 J.P. Morgan Volemont Risk Cont Volemont Apr-12 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLEMG Volemont Global Strategy Volemont Dec-12 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLEMO J.P. Morgan Volemont Index Volemont Aug-11 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLFFS FX Futures Volemont Volemont Jun-13 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLGU2 J.P. Morgan Volemont Global Series 
2 Volemont Mar-13 Alternative 

Beta Volatilities Multi 
Region Carry Portfolio 

Level USD 

JPVOLGU3 J.P. Morgan Volemont Global Series 
3 Volemont  

Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JPVOLWTI Volemont WTI Volemont  Apr-13 Alternative 
Beta Volatilities Americas Carry Portfolio 

Level USD 

JPVOLFXS Volemont FX Volemont  Apr-13 Alternative 
Beta Volatilities Multi 

Region Carry Portfolio 
Level USD 

JVOLB01U Swaption Alpha VOLT Feb-13 Enhanced 
Beta Volatilities Americas Carry Portfolio 

Level EUR 

JVOLENSE Swaption VOLT index – no switch VOLT Feb-13 Enhanced 
Beta Volatilities Americas Carry Portfolio 

Level EUR 

YAJPVUS2 JPM Variance Alpha USD Index YieldAlpha Aug-08 Alternative 
Beta Volatilities Americas Carry Risk 

Optimizing USD 

YAJPVUS8 Variance Alpha 8 USD YieldAlpha Aug-06 Alternative 
Beta Volatilities Americas Carry Risk 

Optimizing USD 

          
J.P. Morgan Tradable Risk Factor Indices - Multi Asset               

          
Ticker Index Name JPM Family Launch 

Date 
Strategy 

Type Asset Class Regional 
Focus 

Strategy 
Style 

Risk 
Method Curncy 

YAJPMEU2 JPM Yield Alpha EUR Index YieldAlpha Aug-08 Alpha Multi Asset Multi 
Region Carry Multi 

Methods EUR 

YAJPMEU8 Yield Alpha 8 EUR YieldAlpha Aug-06 Alpha Multi Asset Multi 
Region Carry Multi 

Methods EUR 

YAJPMBJ8 Yield Alpha 8 Bunsan JPY YieldAlpha Aug-07 Alpha Multi Asset Multi 
Region Carry Multi 

Methods JPY 

YAJPMJP2 JPM Yield Alpha JPY Index YieldAlpha Aug-08 Alpha Multi Asset Multi 
Region Carry Multi 

Methods JPY 

YAJPMJP8 Yield Alpha 8 JPY Index YieldAlpha Aug-08 Alpha Multi Asset Multi 
Region Carry Multi 

Methods JPY 

YAJPMQAU Quattro Alpha (USD) YieldAlpha Aug-08 Alpha Multi Asset Multi 
Region Carry Multi 

Methods USD 

YAJPMUS2 JPM Yield Alpha USD Index YieldAlpha Aug-08 Alpha Multi Asset Multi 
Region Carry Multi 

Methods USD 

YAJPMUS8 Yield Alpha 8 USD YieldAlpha Aug-06 Alpha Multi Asset Multi 
Region Carry Multi 

Methods USD 

EEJPR5SW Efficient Allocation (CHF) Efficiente Jan-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing CHF 

EFJPEH8E Efficiente (EUR Hedged) Efficiente Aug-07 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing EUR 

EFJPEH8I Efficace (EUR Hedged) Efficiente Mar-08 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing EUR 

EFJPEH8T J.P. Morgan Efficiente TR (EUR 
Hedged) Index Efficiente   Enhanced 

Beta Multi Asset Multi 
Region Momentum Risk 

Optimizing EUR 

EFJPGH8T J.P. Morgan Efficient Frontier (GBP) 
Index Efficiente  

Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing GBP 

EEJPDS5E ETF Efficiente Daily Series 5 Efficiente Nov-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 
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EEJPDS8E J.P.Morgan ETF Efficiente Daily 
Series 8 Index Efficiente  

Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EEJPRC5E J.P. Morgan ETF Efficiente 5 RC 
Index Efficiente Jan-13 Enhanced 

Beta Multi Asset Multi 
Region Momentum Risk 

Optimizing USD 

EEJPRC8E ETF Efficiente 8 RC Efficiente Nov-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EEJPUS5E ETF Efficiente 5 Index Efficiente Oct-10 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EEJPUS5M ETF Efficiente 5 MOD Efficiente Mar-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EEJPUS5P ETF Efficiente 5 Price Return Efficiente May-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EEJPUS5T ETF Efficiente 5 Total Return Efficiente May-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EEJPUS8E ETF Efficiente 8 Index Efficiente Oct-10 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EFJP5GUE Efficiente Global 5% (USD) Efficiente May-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EFJPEM5E Efficiente EM 5 Efficiente May-13 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EFJPIU8E Efficiente Islamic Efficiente Jun-09 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EFJPUS8E Efficiente (USD) Efficiente Aug-07 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

EFJPUS8T J.P. Morgan Efficiente TR USD 
Index Efficiente  

Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

IEJPRC4E ETF Efficiente Income Focus DS 4 Efficiente Aug-12 Enhanced 
Beta Multi Asset Multi 

Region Momentum Risk 
Optimizing USD 

IEJPRC6E J.P. Morgan Income Focus 
Efficiente DS 6 Risk Control Efficiente Aug-12 Enhanced 

Beta Multi Asset Multi 
Region Momentum Risk 

Optimizing USD 

IEJPUS4E J.P. Morgan Income Focus 
Efficiente DS 4 Index Efficiente Aug-12 Enhanced 

Beta Multi Asset Multi 
Region Momentum Risk 

Optimizing USD 

IEJPUS6E J.P.Morgan Income Focus Efficiente 
DS 6 Index Efficiente Aug-12 Enhanced 

Beta Multi Asset Multi 
Region Momentum Risk 

Optimizing USD 

JMOZ5USD Mozaic 5 Mozaic Jul-12 Alpha Multi Asset Multi 
Region Momentum Multi 

Methods USD 

JMOZUSD Mozaic USD  Mozaic Apr-09 Alpha Multi Asset Multi 
Region Momentum Multi 

Methods USD 

JPCORLIS Coriolis Call Overwrite May-12 Alternative 
Beta Multi Asset Multi 

Region Value None USD 

AIJPB1E5 Alternative Index Series Top 20 
Sharpe AIS Mar-10 Alpha Multi Asset Multi 

Region Multi Factor Portfolio 
Level EUR 

AIJPB1EX Alternative Index Series Top 20 
Sharpe AIS Mar-10 Alpha Multi Asset Multi 

Region Multi Factor Portfolio 
Level EUR 

AIJPV5HE Alternative Index Series 5 Volatility 
Enhanced (HUF) AIS Jan-11 Alpha Multi Asset Multi 

Region Multi Factor Portfolio 
Level HUF 

AIJPVTHE Alternative Index Series 10 Volatility 
Enhanced (HUF) AIS Jan-11 Alpha Multi Asset Multi 

Region Multi Factor Portfolio 
Level HUF 

AIJPB1U5 J.P.Morgan AI Top 20 Sharpe AIS Mar-10 Alpha Multi Asset Multi 
Region Multi Factor Portfolio 

Level PLN 

AIJPM5EE Alternative Multi-Strategy 5 AIS Nov-09 Multi Type Multi Asset Multi 
Region Multi Factor Multi 

Methods EUR 

AIJPM5JE Alternative Multi-Strategy 5 AIS Nov-09 Multi Type Multi Asset Multi 
Region Multi Factor Multi 

Methods JPY 

AIJPM5UE Alternative Multi-Strategy 5 AIS Nov-09 Multi Type Multi Asset Multi 
Region Multi Factor Multi 

Methods USD 

AIJPMTUE Alternative Multi-Strategy 10 AIS Nov-09 Multi Type Multi Asset Multi 
Region Multi Factor Portfolio 

Level USD 

QSJP5FEE Quintet Balanced 5 (EUR) YieldAlpha Dec-12 Alpha Multi Asset Multi 
Region Multi Factor Multi 

Methods EUR 

CIJPAIMS Asia Multi Factor Index YieldAlpha  Alpha Multi Asset Multi 
Region Multi Factor Multi 

Methods USD 

QSJP4FUE J.P. Morgan Quartet Balanced 
(USD) YieldAlpha Jan-12 Alpha Multi Asset Multi 

Region Multi Factor Multi 
Methods USD 
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Examples of J.P. Morgan Tradable Risk Factor Indices 

 
J.P. Morgan GCBTR – Rates Carry 

Strategy Index Profile 

  Index Name  GBCTR 
Strategy Type Alternative Beta 
Asset Class Rates 
Regional Focus Multi Region 
Strategy Style Carry 
Risk Method None 
Launch Date May 2012 
Bloomberg Ticker JGCTRCBU Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2000 Since Launch During GFC 
Average (%) 1.2 4.0 6.4 4.5 2.0 5.4 
CAGR (%) 1.1 4.0 6.5 4.5 1.9 5.5 
STDev (%) 3.7 3.8 4.4 4.1 3.3 2.4 
MaxDD (%) -3.3 -3.7 -3.9 -5.7 -3.3 -1.6 
MaxDDur (in yrs) 0.5 0.6 0.7 3.3 0.5 0.5 
Sharpe Ratio 0.3 1.0 1.5 1.1 0.6 2.2 
Sortino Ratio 0.5 2.1 3.2 2.1 1.0 5.4 
Calmar Ratio 0.4 1.1 1.8 1.2 0.6 3.4 
Pain Ratio 1.0 4.4 9.3 3.1 2.3 19.7 
Reward to 95VaR 0.1 0.2 0.4 0.3 0.1 0.6 
Reward to 95CVaR 0.1 0.2 0.3 0.2 0.1 0.5 
Hit Rate 58.3% 55.6% 61.7% 62.3% 55.6% 80.0% 
Gain to Pain 1.3 2.2 3.0 2.3 1.6 5.1 
Skewness -0.5 0.3 0.1 0.1 -0.5 0.1 
Kurtosis -0.6 -0.3 0.0 0.5 -0.2 1.0 
Correl with Equity 32.5% -32.3% -32.6% -31.4% 0.0% -26.4% 
Correl with Bond 74.1% 54.8% 42.9% 53.8% 60.8% 55.5% 
CoSkew with Equity -0.4 0.1 0.2 0.2 0.3 0.2 
CoSkew with Bond -0.5 -0.3 -0.4 -0.1 -0.7 0.3 
CoKurt with Equity -2.8 -4.5 -4.0 -4.0 -4.9 -4.5 
CoKurt with Bond -0.3 -0.7 -1.3 -1.3 0.1 -2.0 

 
Strategy Description           
• The Government Bond Carry-To-Risk USD-denominated Index follows a rule-based strategy (“Strategy”) that provides 

synthetic exposure to a basket of bond futures from the United States, Europe and Japan. The Strategy can synthetically 
take long or short exposure of up to 7 of its eligible constituents via the relevant Futures Trackers, each selected on the 
basis of recent “Carry-to-Risk” and each subject to a volatility target.      

Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Performance calculated as of Oct 2013. 
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J.P. Morgan Neo DJUBS Alpha – Commodity Carry 
Strategy Index Profile 

  Index Name Neo DJUBS Alpha  
Strategy Type Alpha 
Asset Class Commodities 
Regional Focus Multi Region 
Strategy Style Carry 
Risk Method Multiple Methods 
Launch Date October 2012 
Bloomberg Ticker JMABNEO1 Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2000 Since Launch During GFC 
Average (%) 0.2 2.7 3.7 6.5 0.5 10.2 
CAGR (%) 0.2 2.7 3.7 6.7 0.5 10.6 
STDev (%) 1.3 2.4 2.6 2.8 1.3 3.6 
MaxDD (%) -1.4 -1.4 -2.0 -2.0 -1.4 -1.3 
MaxDDur (in yrs) 0.8 0.8 0.8 1.3 0.8 0.2 
Sharpe Ratio 0.2 1.1 1.4 2.3 0.4 2.8 
Sortino Ratio 0.2 2.5 3.1 6.7 0.5 9.3 
Calmar Ratio 0.2 2.0 2.7 4.8 0.4 8.0 
Pain Ratio 0.4 5.9 8.4 21.1 0.9 62.3 
Reward to 95VaR 0.0 0.3 0.3 0.8 0.1 1.0 
Reward to 95CVaR 0.0 0.2 0.3 0.5 0.1 0.7 
Hit Rate 58.3% 66.7% 68.3% 75.2% 61.5% 80.0% 
Gain to Pain 1.1 2.6 3.1 6.1 1.3 8.3 
Skewness -1.0 0.9 0.5 0.3 -1.1 -0.1 
Kurtosis 0.7 1.7 0.8 0.0 1.0 -0.8 
Correl with Equity 2.6% 16.7% 33.4% 6.9% -6.5% 35.4% 
Correl with Bond 38.4% 29.2% 46.6% 21.2% 37.3% 57.3% 
CoSkew with Equity 0.0 -0.2 -0.2 -0.3 0.1 -0.2 
CoSkew with Bond 0.0 0.1 0.2 0.1 -0.1 0.1 
CoKurt with Equity -4.3 -2.9 -2.2 -2.5 -4.4 -2.2 
CoKurt with Bond -3.5 -2.3 -0.7 -2.2 -3.3 -1.6 

 
Strategy Description           
• Equal risk weights are applied to two dynamically rebalanced portfolios of curve alpha strategies on individual 

commodities 

• Each portfolio is optimized and rebalanced monthly to the weights that have historically generated the maximum return 
for 5% volatility: Portfolio One: 1 month lookback; Portfolio Two: 6 month lookback 

• The portfolios select from a universe of 40 curve alpha strategies across 25 commodities, where strategies are chosen to 
reflect sector specific curve profiles: (1) Long CCI ex-FM vs. short benchmark for all commodities; (2) Long Contag for 
Metals and Energy, Seasonal for Ags and Livestock vs short the benchmark in both cases. (3) To preserve liquidity, 
weights are capped at 10% per strategy, 20% per commodity.       

Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Performance calculated as of Oct 2013. 
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J.P. Morgan Asian EM Equity Rotator 5 – Equity Momentum 
Strategy Index Profile 

  Index Name Asian EM Rotator 5 
Strategy Type Alternative Beta 
Asset Class Equities 
Regional Focus Emerging Markets 
Strategy Style Momentum 
Risk Method Risk Timing 
Launch Date March 2012 
Bloomberg Ticker CIJPAEB5 Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2001 Since Launch During GFC 
Average (%) 1.0 0.7 4.3 5.5 1.2 3.8 
CAGR (%) 1.0 0.7 4.3 5.6 1.2 3.7 
STDev (%) 3.3 2.9 3.6 3.8 2.9 4.8 
MaxDD (%) -3.1 -3.1 -3.1 -3.1 -3.1 -2.8 
MaxDDur (in yrs) 0.5 1.3 1.3 1.3 0.5 0.7 
Sharpe Ratio 0.3 0.2 1.2 1.4 0.4 0.8 
Sortino Ratio 0.5 0.3 2.3 3.0 0.6 1.5 
Calmar Ratio 0.3 0.2 1.4 1.8 0.4 1.3 
Pain Ratio 0.9 0.5 4.8 7.6 1.6 3.1 
Reward to 95VaR 0.0 0.0 0.3 0.3 0.1 0.2 
Reward to 95CVaR 0.0 0.0 0.2 0.2 0.1 0.1 
Hit Rate 58.3% 58.3% 68.3% 69.1% 60.0% 55.0% 
Gain to Pain 1.3 1.2 2.5 2.9 1.4 1.8 
Skewness -0.3 -0.3 0.3 0.2 -0.3 0.4 
Kurtosis -0.1 -0.5 0.7 0.5 0.0 -0.4 
Correl with Equity 30.2% 1.3% 23.7% 14.5% 0.8% 19.1% 
Correl with Bond 76.3% 42.9% 63.6% 42.6% 70.9% 62.2% 
CoSkew with Equity -0.6 -0.4 0.0 0.0 -0.1 0.1 
CoSkew with Bond -0.1 -0.4 0.1 0.0 -0.2 0.3 
CoKurt with Equity -3.0 -3.6 -2.3 -2.8 -3.9 -3.3 
CoKurt with Bond -1.0 -1.6 -0.4 -1.6 -0.8 -1.4 

 
• The Index is a notional rules-based proprietary index that tracks the excess return of a synthetic portfolio of up to five 

constituents that are each an Asian/EM equity index or a futures tracker (selected from Asian/EM equity indices or 
equity futures trackers) and, if fewer than five Equity Constituents have been selected, the J.P. Morgan U.S. Treasury 
Notes Futures Tracker (the “Bond Constituent”) above the return of the J.P. Morgan Cash Index USD 3 Month.  

• The Index rebalances the synthetic portfolio monthly. Each month, the Index will select the top five positive performing 
Equity Constituents based on their past month’s performance for inclusion in the synthetic portfolio. 

• As part of this rebalancing process, the Index will assign weights to the Basket Constituents. The Index uses a volatility 
budgeting approach to assign weights to the Non-Cash Constituents based on a total volatility allocation of 5%. 

Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Performance calculated as of Oct 2013. 
 

0

20

40

60

80

100

120

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Asian EM Equity Rotator 5 Backtested
Asian EM Equity Rotator 5 Realized

 154 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

J.P. Morgan Helix2 – Rates Momentum 

Strategy Index Profile 

  Index Name J.P. Morgan Helix2  
Strategy Type Alternative Beta 
Asset Class Rates 
Regional Focus Multi Region 
Strategy Style Momentum 
Risk Method Risk Timing 
Launch Date February 2013 
Bloomberg Ticker JHLXH2US Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2000 Since Launch During GFC 
Average (%) 2.9 4.5 5.7 6.0 1.5 7.3 
CAGR (%) 2.8 4.5 5.8 6.1 1.4 7.5 
STDev (%) 4.7 4.1 3.7 4.1 5.2 3.8 
MaxDD (%) -4.4 -4.4 -4.4 -4.4 -4.4 -1.8 
MaxDDur (in yrs) 0.5 0.5 0.8 0.9 0.5 0.3 
Sharpe Ratio 0.6 1.1 1.6 1.5 0.3 2.0 
Sortino Ratio 0.8 1.7 2.8 3.1 0.4 5.1 
Calmar Ratio 0.7 1.0 1.3 1.4 0.3 4.1 
Pain Ratio 2.3 6.0 11.7 9.7 0.9 33.8 
Reward to 95VaR 0.1 0.2 0.4 0.4 0.0 0.6 
Reward to 95CVaR 0.1 0.1 0.2 0.2 0.0 0.4 
Hit Rate 75.0% 69.4% 75.0% 67.9% 77.8% 70.0% 
Gain to Pain 1.6 2.3 3.3 3.3 1.3 4.8 
Skewness -2.0 -0.8 -0.8 0.3 -2.1 0.2 
Kurtosis 4.8 2.0 2.4 1.5 4.4 0.3 
Correl with Equity 59.4% 15.5% 9.1% -14.0% 54.5% -3.6% 
Correl with Bond 52.6% 56.5% 55.9% 36.1% 63.0% 59.1% 
CoSkew with Equity -0.2 0.2 0.1 0.2 -0.3 0.0 
CoSkew with Bond -0.2 -0.5 -0.1 0.1 -0.3 0.5 
CoKurt with Equity -2.4 -3.5 -3.1 -3.6 -3.0 -3.6 
CoKurt with Bond -1.9 -0.7 -0.6 -1.5 -2.4 -1.6 

 
Strategy Description           
• Seeks to take advantage of trends in short-term EUR and USD interest rates by creating exposure to a synthetic basket of 

EURIBOR and Eurodollar futures trackers. 

• Index can provide dynamic long and/or short exposure to the front four EURIBOR and Eurodollar exchange-traded 
quarterly money market futures. 

• Stop loss cut-out feature if returns are persistently negative over a rolling 1-week observation window. 

• Volatility target of 3.5%. 

• Leverage factor determined as a function of the index’s volatility. 
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Performance calculated as of Oct 2013. 
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J.P. Morgan Kronos – Equity Momentum/Value 
Strategy Index Profile 

  Index Name Kronos  
Strategy Type Alternative Beta 
Asset Class Equities 
Regional Focus Americas 
Strategy Style Momentum/Value 
Risk Method None 
Launch Date June 2013 
Bloomberg Ticker JPMZKRNS Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2000 Since Launch During GFC 
Average (%) 5.8 14.3 19.8 14.8 2.2 39.8 
CAGR (%) 5.7 14.9 20.1 14.8 1.7 42.4 
STDev (%) 7.5 8.0 17.6 14.5 10.8 30.8 
MaxDD (%) -3.8 -3.8 -12.7 -15.6 -3.8 -9.6 
MaxDDur (in yrs) 0.3 0.3 1.2 2.0 0.3 0.7 
Sharpe Ratio 0.8 1.8 1.1 1.0 0.2 1.3 
Sortino Ratio 1.3 4.3 4.2 3.1 0.3 8.1 
Calmar Ratio 1.5 3.8 5.2 3.9 0.6 4.1 
Pain Ratio 5.6 26.4 11.1 6.0 1.3 17.5 
Reward to 95VaR 0.1 0.4 0.5 0.4 0.0 1.1 
Reward to 95CVaR 0.1 0.4 0.3 0.3 0.0 1.0 
Hit Rate 66.7% 72.2% 68.3% 61.8% 60.0% 60.0% 
Gain to Pain 1.8 3.9 3.7 2.9 1.2 5.2 
Skewness -0.4 0.5 4.4 3.7 -0.1 2.6 
Kurtosis -0.1 2.0 27.4 24.2 -1.7 7.5 
Correl with Equity -1.0% -39.6% -47.7% -37.0% 9.6% -40.9% 
Correl with Bond -16.8% -5.3% 13.9% 10.7% -3.3% 16.0% 
CoSkew with Equity -0.6 0.4 0.3 0.5 -0.6 0.4 
CoSkew with Bond 0.5 0.2 0.3 0.3 0.7 0.6 
CoKurt with Equity -2.5 -4.6 -4.5 -5.2 -6.0 -5.5 
CoKurt with Bond -5.1 -4.0 -2.2 -2.6 -9.4 -3.1 

 
Strategy Description           
• “Kronos” provides exposure to the S&P 500 end-of-month mean reversion strategy and the S&P 500 options expiry 

momentum strategy using E-mini S&P 500 Futures. 

• One week before the end of month, if the front month E-mini S&P 500 Futures contract (Bloomberg: ES1 <Index>) is: 
• Below the front month contract’s level on the last day of the previous month, then go long the futures contract 
• Above the front month contract’s level on the last day of the previous month, then go short the futures contract 
• The index is fully invested for the next 5 business days  

• Three business days before S&P 500 options expiry, if the front month E-mini S&P 500 Futures contract is: 
• Above the front month contract’s level on the previous expiry, then go long the futures contract 
• Below the front month contract’s level on the previous expiry, then go short the futures contract 
• The index is fully invested for the next 3 business days  
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J.P. Morgan Volemont Brent – Commodities Volatility 
Strategy Index Profile 

  Index Name Volemont Brent  
Strategy Type Alternative Beta 
Asset Class Commodities 
Regional Focus Multi Region 
Strategy Style Volatility 
Risk Method Risk Timing 
Launch Date July 2013 
Bloomberg Ticker JPVOLBRT Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2006 Since Launch During GFC 
Average (%) 14.0 15.5 21.9 15.2 11.0 1.9 
CAGR (%) 14.8 15.9 23.3 15.6 11.5 1.2 
STDev (%) 5.9 11.5 12.4 11.7 4.8 12.4 
MaxDD (%) -2.3 -15.8 -15.8 -15.8 -0.7 -15.2 
MaxDDur (in yrs) 0.3 0.6 0.6 1.2 0.1 1.2 
Sharpe Ratio 2.4 1.3 1.8 1.3 2.3 0.2 
Sortino Ratio 5.8 1.9 3.0 2.1 8.6 0.3 
Calmar Ratio 6.1 1.0 1.4 1.0 14.9 0.1 
Pain Ratio 35.0 6.1 11.9 6.3 59.5 0.4 
Reward to 95VaR 0.5 0.5 0.5 0.3 1.2 0.0 
Reward to 95CVaR 0.5 0.2 0.2 0.2 1.2 0.0 
Hit Rate 83.3% 75.0% 75.0% 72.6% 75.0% 50.0% 
Gain to Pain 5.6 3.0 3.8 2.8 6.0 1.1 
Skewness -0.1 -2.3 -1.2 -0.9 -0.5 0.9 
Kurtosis 1.5 9.7 4.5 3.7 -3.4 2.3 
Correl with Equity 51.0% 32.9% 17.2% 21.8% 73.9% -26.6% 
Correl with Bond -19.3% 4.3% -20.6% -8.1% 78.2% -53.6% 
CoSkew with Equity -0.1 0.2 0.3 0.2 -1.5 0.1 
CoSkew with Bond -0.2 0.2 -0.1 -0.1 -1.2 -0.3 
CoKurt with Equity -1.9 -1.9 -3.1 -2.5 -0.4 -4.1 
CoKurt with Bond -4.2 -3.4 -5.4 -4.6 -0.2 -6.1 

 
Strategy Description           
• The Strategy aims to monetize any positive difference between implied and realized volatility in Brent crude oil. 

• Each business day, the strategy may initiate a synthetic short ATM straddle position on the second nearby listed Brent 
options contract: (1) Strikes are diversified to limit gamma exposure and mitigate spot dependency; (2) The aggregate 
position is delta hedged daily on the close to capture the volatility premium 

• Aims to improve risk-return characteristics and mitigate drawdown by employing a Risk Overlay, which suspends the 
sale of straddles in periods of macro market stress 

• The strategy targets 0.5% vega.      
Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Performance calculated as of Oct 2013. 
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J.P. Morgan ETF Efficiente 5 – Multi Asset Momentum 
Strategy Index Profile 

  Index Name ETF Efficiente 5 
Strategy Type Enhanced Beta 
Asset Class Multi Asset 
Regional Focus Multi Region 
Strategy Style Momentum 
Risk Method Risk Budgeting 
Launch Date October 2010 
Bloomberg Ticker EEJPUS5E Index  

  
 

Perf/Risk Summary Past 1-year Past 3-year Past 5-year Since 2006 Since Launch During GFC 
Average (%) 2.3 5.8 7.6 5.2 5.8 2.4 
CAGR (%) 2.1 5.8 7.7 5.1 5.8 2.0 
STDev (%) 6.3 5.3 5.8 6.2 5.2 8.7 
MaxDD (%) -5.1 -5.1 -5.1 -10.3 -5.1 -10.3 
MaxDDur (in yrs) 0.5 0.5 0.5 2.8 0.5 1.1 
Sharpe Ratio 0.4 1.1 1.3 0.8 1.1 0.3 
Sortino Ratio 0.5 1.9 2.5 1.3 1.9 0.4 
Calmar Ratio 0.4 1.1 1.5 1.0 1.1 0.2 
Pain Ratio 1.2 6.4 7.6 2.8 6.6 0.9 
Reward to 95VaR 0.0 0.3 0.3 0.2 0.3 0.0 
Reward to 95CVaR 0.0 0.2 0.2 0.1 0.2 0.0 
Hit Rate 66.7% 69.4% 70.0% 63.0% 70.3% 55.0% 
Gain to Pain 1.3 2.4 2.8 1.9 2.4 1.2 
Skewness -1.1 -0.4 -0.1 -0.5 -0.4 -0.4 
Kurtosis 2.6 2.0 1.2 1.7 2.1 1.2 
Correl with Equity 30.7% 8.3% 20.9% 26.9% 8.3% 52.5% 
Correl with Bond 87.3% 73.3% 78.3% 61.2% 72.9% 82.8% 
CoSkew with Equity -0.2 0.2 -0.2 -0.4 0.2 -0.7 
CoSkew with Bond -0.8 -0.6 0.0 -0.2 -0.7 0.2 
CoKurt with Equity -2.6 -3.0 -2.3 -1.5 -3.0 -0.9 
CoKurt with Bond 0.3 -0.1 0.6 -0.6 -0.1 -0.2 

 
Strategy Description           
• The index seeks to provide exposure to a range of asset classes and geographic regions based on the modern portfolio 

theory approach to asset allocation. 

• The Index selects from a basket of 12 cross asset ETFs and the J.P. Morgan Cash Index USD 3 Month. The ETF 
universe includes SPY, IWM, EFA, TLT, LQD, HYG, EEM, EMB, IYR, GSG, GLD and TIP. 

• The Index seeks to identify the weights for each Basket Constituent that would have resulted in the hypothetical 
portfolio with the highest return over the previous six months while realizing an annualized volatility over the same 
period of 5% or less.          

Source: J.P. Morgan Quantitative and Derivatives Strategy, Bloomberg. * Performance calculated as of Oct 2013. 
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Theory of Risk Premia 
Risk premium is commonly regarded as the difference between the expected return of a risky investment and the riskless 
return (e.g. US Treasury bill return for a US$ investment). In general, risk premium is the expected compensation (or 
excess return) for bearing the risk of losses on an investment. From the perspective of a rational investor, requiring a 
positive risk premium is related to his/her risk aversion, characterized by a concave utility function.  

Economic and financial theories based on investor rationality and market efficiency relate risk premia with macro/liquidity 
risk factors, investor risk-aversion and its covariance with “bad times48”. More recent developments in behavioral theories 
links the persistence of market anomalies to investors’ psychological traits such as anchoring, herding, over-confidence, 
over-reaction and frame dependence, which are not captured by traditional finance theories.  We believe both rational and 
irrational psychological factors contribute to the time-varying nature of different risk premia. Swinging investor sentiment 
between bullishness and bearishness is probably more important in determining tactical trends and reversals in different 
investment strategies, while rational financial theories could provide some general guidance on the “intrinsic values" of the 
risk factors. These two forces together determine risk factor cycles.  

Risk averse investors require positive risk premia 
In order to understand why there are risk premia, we start by describing an average investor through the use of a utility 
function. In Economics terms, a utility function quantifies the satisfaction of an individual from consuming a given amount 
of goods and services. Conceptually, it maps a person’s wealth or consumption in dollar terms (the total value that he/she 
might receive or consume in goods/services) into a numeric measure of “happiness”.  

Generally speaking, there are two “agreed” properties for the utility function of an average investor that is assumed to be 
risk-averse: (1) More wealth leads to higher level of satisfaction, and (2) Additional satisfaction acquired by a given 
increase of wealth decreases when one obtains more wealth. The first property is called “monotonicity" and the second 
"decreasing marginal utility". These two fundamental properties make the utility function upward sloping and concave49. 

For an expected utility maximizer50 with unit investment capital and a concave utility function u, any investment 
opportunity with one-period return R should satisfy: 

𝐸[𝑢(1 + 𝑅)] ≥ 𝑢�1 + 𝑟𝑓�  

where 𝐸[·] is the expectation of a random variable and 𝑟𝑓 is the risk-free return with the same investment horizon. The 
inequality above simply states that "the investor is rationally requiring a higher expected utility".  

As the utility function is concave, by Jensen’s inequality, 

𝑢(𝐸[1 + 𝑅]) ≥ 𝐸[𝑢(1 + 𝑅)] 

Putting the two equations together, we have  

𝑢(𝐸[1 + 𝑅]) ≥ 𝐸[𝑢(1 + 𝑅)] ≥ 𝑢�1 + 𝑟𝑓�  

48 Typically, “bad times” could refer to adverse economic and market scenarios such as faltering economic growth, high 
inflation/deflation, banking/liquidity crises, volatility spikes, and other economic/financial turbulences. For historical records of various 
financial crises in 66 countries, see Reinhart and Rogoff (2009).  
49 Logarithmic and quadratic utility functions are frequently used by academia and practitioners. 
50 According to von Neumann–Morgenstern (VNM) Utility Theorem, a (VNM-) rational decision maker must be an expected utility 
maximize for some utility function. The famous "Kelly criterion" used in the gaming and trading community is a special case with 
logarithmic utility function.  
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Because the utility function u is monotonically increasing, the required risk premium (𝐸[𝑅] − 𝑟𝑓) must be positive. Despite 
our simple illustration of a one-period investment choice, similar logic works for multi-horizon investment opportunities. 

Risk premia defined by its covariance with “bad times” 
A central idea among modern asset pricing theories is that the no-arbitrage price of an asset at time t (denoted by Pt) is 
given by the conditional expectation of its payoff at (t+1) (denoted by Xt+1) discounted to t: 

𝑃𝑡 = 𝐸𝑡[𝑋𝑡+1𝑚𝑡+1] 

where m is a “stochastic discount factor” (SDF) reflecting a time-varying discount rate and 𝐸𝑡[·] is the conditional 
expectation of a random variable. The SDF is intuitively a measure of “bad times”: it is high during “bad times” such as 
macro-economic recessions and/or market distress and it is low during “good times” such as economic booms and/or 
market richness. In other words, assets that pay off well in bad times are valuable to investors.  

With some re-arrangement of the above equation51, we can get  

𝐸𝑡�𝑅𝑡+1 − 𝑟𝑓� = −�1 + 𝑟𝑓�cov𝑡�𝑅𝑡+1 − 𝑟𝑓 ,𝑚𝑡+1 � 

which states that the risk premium for any investment is inversely related to its covariance with SDF, the index of “bad 
times”.   

With this in mind, it is not difficult to understand why traditional long-only investments in risky asset classes like equity, 
credit and commodities may demand high risk premia, while long-only investment in safe-haven assets such as US 
Treasuries could command low or even negative risk premia. Moreover, systematic strategies like FX carry and equity 
index volatility selling could justify high risk premia as they tend to lose money in bad times. 

Monetizing “crash-risk” or tail-risk for liquidity providers 
A more generic explanation for the risk premia of different systematic strategies is that these strategies behave like a 
lottery-ticket selling strategy that monetize premium income in normal market conditions, but are subject to infrequent but 
large losses when related “tail" events materialize. Rational liquidity providers for these systematic strategies such as 
currency carry and commodity momentum thus demand extra compensation for bearing these “crash” risks.  

Note that the “crash” events cover broader market situations than the "bad times" terminology in the previous section and 
the “crash” events may differ for different strategies52. Due to different implementation details, the “crash” events may 
even differ for the same type of strategies, e.g. among carry and momentum strategies for different asset classes. With the 
benefits of hindsight, different macro/micro indicators could be created to time or forecast these "crash" events in order to 
improve strategy performances. We cover more empirical details of the “crash risks” of cross-asset systematic strategy 
styles in Chapter 2 of the main text. 

Irrational behaviors 
Although the assumption of a “rational” investor is theoretically appealing to financial economics researchers, empirical 
evidence suggests that market participants make systematic errors. The outbreak of the 2008 global financial crisis (GFC) 
reinforced the perception that investors could behave irrationally for a sustained period of time.  

Behavioral finance theories suggest that market prices also reflect the shifting demands from irrational investors. In other 
words, the time-varying risk premia reflect both the rational and irrational nature of financial markets. As economist Robert 
Shiller puts it, “The Efficient Market Hypothesis (EMH) is one of the most egregious errors in the history of economic 
thought - It’s a half-truth.” Strategies that are designed to explore investor behavior related market inefficiencies could be 

51 See, for example, Cochrane (2001). 
52 See Brunnermeier, Nagel and Pedersen (2008) and Daniel and Moskowitz (2013). 
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rewarded. For example, the observed short-term/long-term mean-reversion and medium-term momentum in many asset 
classes are linked to investors’ initial under-reaction, subsequent over-reaction and final realization cycles. Different 
systematic strategies across asset classes are designed to capture these “behavioral cycles”.  

Not all risks get compensated at all times 
It is well understood that idiosyncratic risks could be diversified away, but systematic risks cannot. While the traditional 
Capital Asset Pricing Model (CAPM)53 predicts only systematic risk sources carry risk premia, more recent papers54 
suggest idiosyncratic risk could also explain cross sectional stock returns. Risk premium investing is about exploring 
sources of risks that get rewarded over the medium to long term.   

However, not all risk-taking activities are compensated. For example, it is well-known that casinos gain a consistent edge 
over gamblers and hence gambling is a long-run losing activity despite its risk-taking nature. Even strategies that are 
proved to gain positive risk premia could suffer extended periods of drawdown.  

For example, the “Magic Formula” propagated by Hedge Fund manager Joel Greenblatt55, which employs quantitative 
stock screens to purchase stocks with high earnings yields and high return on capital, suffered steep a drawdown during the 
GFC56. However, this doesn’t mean the “Magic Formula” is not a valid source of long-run risk premium. In the same vein, 
despite the fact that the cross-asset strategy factors introduced in Chapter 2 earned positive risk premia during the 41-year 
sample period, many strategies suffered dramatic and extended periods of drawdown that may result in the strategies 
falling out of favor with investors.  

As a result, there should be sound economic rationale behind a successful risk premium strategy. Besides establishing 
economic explanations, an understanding of the time-varying and regime-shifting natures of different risk premia is 
essential for successful cross-asset systematic investing. Moreover, one may attempt to implement various dynamic risk 
timing strategies to enhance the “vanilla” risk premia strategies in the hope that future drawdowns could be avoided.  

Market inefficiencies and Arbitrage Opportunities 
The Efficient Market Hypothesis (EMH) suggests that the market prices of traded assets reflect all known information at 
any time. However, this contradicts with the observed fact that security prices sometimes fluctuate wildly even during 
periods with no new market information. Moreover, EMH-advocators argue that even if there are temporary market 
inefficiencies due to liquidity or legal constraints, smart investors will exploit them and arbitrage them away. Again, this 
also cannot withstand the well-known phenomenon that events like company earnings announcements, FOMC meetings, 
key economic data releases, rating agencies’ guidance on credit upgrade/downgrades, etc, presented persistent arbitrage 
opportunities in equity, rates and credit markets.  

The astonishing long-run track records of many Market Wizards57 interviewed by Jack D. Schwager also present strong 
cases against the EMH. One common trait of success for these Market Wizards is a strict enforcement of risk management 
rules that reduces the negative impact of “tail events”. Actually, it is these managers’ ability to avoid “crash events” that 
generates long-run alpha for star fund managers. We examined the details for different risk management systems that could 
be employed to improve risk-adjusted returns in Chapter 3. 

Over-fitting and Data Mining Biases 
Data-mining bias involves selecting attractive trading strategies with high return-risk profiles among many candidate 
strategies. It usually occurs when the same database is used repeatedly to search for patterns or trading rules by fine-tuning 

53 See Sharpe (1964) and Lintner (1965). 
54 See Miffre et al. (2011) and Heaton and Deborah (1996). 
55 Detailed performance and implementation could be found in Greenblatt’s best-seller series “The Little Book That Beats the Market" 
and “The Little Book That Still Beats the Market”. 
56 See Gray and Carlisle (2012). 
57 See the “Market Wizards” book series (1988, 1992, 2001, 2012) by Jack D. Schwager. 
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parameters such as buy/sell thresholds, lookback-window length, and exponential decay weights, etc. Only the best result is 
shown on a specific combination of signals and/or sample periods. In fact, the frequently claimed “out-of-sample” tests in 
many investment-related studies were calibrated "in-sample". Even though “sensitivity studies” were provided to prove the 
consistency of a strategy, they could only be performed on parameters that are not the key inputs to the relevant strategy. 

Increasing the number of parameters for a systematic strategy often improves back-test results. However, this usually leads 
to the so-called “over-fitting” problem that often precludes strategy crashes once it goes live (which is a true out-of-sample 
test). One should recognize the reality that any simulated (back-tested) performance likely overstates future prospects. A 
useful test of data-mining and over-fitting biases is to examine the sensitivity of the strategy’s Sharpe ratio to the key input 
parameters and to various data series/sample periods. 
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Factor Styles and HFR Classification 
According to hedge fund index and database provider Hedge Fund Research (HFR), the total assets under management 
(AUM) for the hedge fund industry reached a record high of US$2.51 trillion as of Q3 2013. Given the increasing public 
awareness of the hedge fund industry, investors may be interested in how different hedge fund strategies may fit into our 
framework of "Traditional Beta/Carry/Momentum/Value/Volatility” fundamental risk factor style classifications. Short 
Q&As are presented in this Appendix to help readers better understand their differences and commonalities.  

Q: What are the popular Hedge Fund Strategies? 
A: Hedge fund database/index providers classify reporting hedge funds via certain strategy style tilts from collected 
responses. The popular hedge fund strategies include Long/Short Equity, Equity Market Neutral, Event Driven, Global 
Macro, Fixed Income Arbitrage, and Volatility Strategies among others. The chart below gives additional granularity of 
hedge fund strategies according to HFR classifications. Other popular hedge fund databases such as DJCS, BarclayHedge 
and Eurekahedge use a similar system of strategy classifications. 

Figure 102: HFR Strategy Classifications 
 

 

Source: HFR. 
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Q: What are the pros and cons of existing Hedge Fund strategy classification? 
A: Pros: The existing strategy classifications from Hedge Fund Database/Index providers give some generic descriptive 
insights into otherwise mysterious strategy styles. For example, HFR defines Global Macro as “a broad range of strategies 
in which the investment process is predicated on movements in underlying economic variables and the impact these have 
on equity, fixed income, hard currency and commodity markets”. 

Cons: It is well documented that hedge fund managers often deviated from their stated strategy style (“Style Drift”) and 
hence the related indices may not be representative. Moreover, the hedge fund database is fragmented (different managers 
may report to different databases) and is subject to self-reporting biases (managers may only want to show the 
performance of certain strategies and/or periods) as well as survivorship bias (closed funds were dropped out of the 
index). Hence, the categorization may not be consistent and related benchmarks may not be broadly representative of 
the stated investment styles. 

 
Q: How is the performance of popular Hedge Fund strategies compared to traditional assets like Stocks and 
Government bonds? 
A: As mentioned in the previous Q/A, all existing hedge fund benchmarks suffer from different degree of biases. We select 
major benchmarks for HFRI (non-investable) indices for illustration purposes. To be sure, traditional asset benchmarks 
such as MSCI equity indices and J.P. Morgan global government indices are more representative of asset returns. 

Table 48 compares return/risk characteristics for HFRI indices versus Global Equities and Government Bonds58 during the 
23-year period from Dec 1989 to Dec 2012. With the exception of Global Macro, we find all hedge fund strategies 
exhibited negative skewness and high excess kurtosis (fat tail), a property exhibited by tail-risk selling strategies like 
Currency-Carry and Cross asset Volatility factors.  

Table 48: Performance-Risk metrics for HFRI Strategies during Dec 1989 to Dec 2012, compared with Global Equities and Government Bonds 
 Composite 

ex-FoFs 
Fund of 
Funds 

Equity 
Hedge 

Event 
Driven 

Global 
Macro 

Relative 
Value 

Emerging 
Market 

Global 
Equities 

Global 
Bond 

Average (%) 7.0 3.5 8.7 7.5 8.1 6.2 9.1 4.1 3.3 
CAGR (%) 7.0 3.4 8.6 7.5 8.1 6.2 8.4 2.8 3.2 
STDev (%) 7.0 5.8 9.2 6.9 7.5 4.4 14.3 15.9 5.9 
MaxDD (%) -24.1 -24.8 -33.0 -28.1 -11.6 -20.7 -47.2 -56.3 -16.7 
MaxDDur (in yrs) 3.3 5.2 5.2 3.5 2.8 2.2 6.3 7.3 4.2 
Sharpe Ratio 1.01 0.61 0.95 1.09 1.07 1.41 0.64 0.26 0.57 
Sortino Ratio 1.59 0.89 1.57 1.63 2.20 2.10 0.93 0.35 0.93 
Calmar Ratio 0.77 0.45 0.65 0.82 1.12 1.50 0.55 0.20 0.86 
Pain Ratio 1.96 0.58 1.65 2.38 2.83 4.65 0.71 0.25 0.82 
Reward to 95VaR 0.21 0.11 0.19 0.22 0.29 0.46 0.13 0.04 0.12 
Reward to 95CVaR 0.14 0.08 0.13 0.13 0.19 0.18 0.08 0.03 0.09 
Hit Rate 0.66 0.63 0.64 0.69 0.58 0.77 0.63 0.58 0.57 
Gain to Pain 2.10 1.61 2.04 2.28 2.34 3.22 1.62 1.21 1.51 
Skewness -0.76 -0.77 -0.29 -1.33 0.47 -2.12 -0.88 -0.66 0.14 
Kurtosis 2.56 4.09 1.77 4.12 0.98 13.76 3.66 1.46 0.41 
Correl with Equity  0.09 0.06 0.09 0.12 -0.03 0.15 0.06 1.00 0.26 
Correl with Bond -0.15 -0.10 -0.15 -0.14 -0.01 -0.10 -0.16 0.26 1.00 
CoSkew with Equity  -0.45 -0.39 -0.41 -0.51 -0.24 -0.48 -0.36 -0.66 -0.09 
CoSkew with Bond -0.22 -0.31 -0.17 -0.29 0.01 -0.38 -0.20 -0.11 0.14 
CoKurt with Equity  -1.51 -1.55 -1.52 -1.48 -2.68 -0.86 -1.80 1.46 -1.69 
CoKurt with Bond -3.83 -3.71 -3.78 -3.83 -3.32 -3.92 -3.75 -2.06 0.41 
Source: HFR, J.P. Morgan Quantitative and Derivatives Strategy. * Calculations are based on monthly excess returns over 1-month US$ Libor rates. 

 

 

58 We select MSCI All-Country World total return index and J.P. Morgan Global Government Bond (unhedged) index as benchmarks for 
Global Equities and Global Government Bonds. 
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Figure 103 and Figure 104 below shows the historical total return of HRFI indices and the sub-Strategy Style categories 
(scaled to US$100 at Dec 31, 1989). We find that all hedge fund strategies (after deduction of fees) displayed superior 
Sharpe ratio than the traditional assets like Global Equities and Global Government Bonds during this specific sample 
period.  

Figure 103: Total returns of HFRI weighted composite (ex FoFs) 
index, HFRI Fund of Fund index and Global Equities/Govt Bond 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Figure 104: Total returns of HFRI major strategies: Equity Hedge, 
Event Driven, Global Macro, Relative Value and Emerging Markets.  

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
Q: Are Hedge Fund strategies good diversifiers to an Equity/Bond Portfolio? 
A: Table 49 below shows the correlation among HFRI strategies as well as between Global Equities and Government 
Bonds. We find significant positive correlation among HFRI sub-strategies and these strategies became nearly perfectly 
correlated during the GFC (except Global Macro) - one possible explanation is that all hedge funds were significantly 
exposed to some common risk factors that materialize during crises.  

Moreover, the hedge fund strategies’ diversification abilities to Global Equities during crisis were generally eroded except 
Global Macro. On the other hand, with the exception of Global Macro, the correlation between Hedge funds strategies and 
Global Government bonds remained low or negative during the GFC. This is not surprising as all Hedge Fund indices 
behaved like equities during the GFC, whereas government bonds benefited from policy rate cuts and global QE programs. 

Table 49: Correlation Matrix of HFRI Strategies, Global Equities and Government Bonds during Dec 1989—Dec 2012 (lower diagonal) and 
during the GFC (upper diagonal) 

 
Composite 

ex-FoFs 
Fund of 
Funds 

Equity 
Hedge 

Event 
Driven 

Global 
Macro 

Relative 
Value 

Emerging 
Market 

Global 
Equities 

Global 
Bond 

Composite ex-FoFs  97 99 96 44 91 97 29 1 
Fund of Funds 87  94 94 49 91 92 26 10 
Equity Hedge 95 82  96 36 90 98 32 -2 
Event Driven 90 76 83  25 95 93 28 -12 
Global Macro 64 67 55 50  16 36 -2 42 
Relative Value 72 66 67 76 32  89 28 -11 
Emerging Market 87 80 74 76 57 62  39 6 
Global Equities 9 6 9 12 -3 15 6  44 
Global Bond -15 -10 -15 -14 -1 -10 -16 26  

Source: HFR, J.P. Morgan Quantitative and Derivatives Strategy. * Calculations are based on monthly excess returns over 1-month US$ Libor rates. 
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Q: How can major Hedge Fund strategies fit into our risk factor framework? 
A: The framework we develop in this primer is concerned with systematic strategies, while most hedge fund strategy 
categories involve combinations of discretionary and systematic elements. For the systematic part of each generic hedge 
fund strategy category, it could be classified as a “Multi Region” and “Multiple Risk Method” strategy that is supposed to 
deliver Alpha. Table 50 below gives some stylized classification of the generic HFR strategies under our framework.  

Table 50: Classification of HFR Strategies 

HFR Strategies Strategy Type Asset Class Regional Focus Strategy Style Risk Method 
Equity Hedge       
           Equity Market Neutral  Alpha Equities Multi Region Multi Strategy Multiple Methods 
           Fundamental Growth  Alpha Equities Multi Region Multi Strategy Multiple Methods 
           Fundamental Value  Alpha Equities Multi Region Value Multiple Methods 
           Quantitative Directional  Alpha Equities Multi Region Value Multiple Methods 
           Short Bias Alpha Equities Multi Region Value Multiple Methods 
Event Driven       
           Credit Arbitrage  Alpha Rates and Credit Multi Region Value Multiple Methods 
           Distressed Restructuring  Alpha Rates and Credit Multi Region Value Multiple Methods 
           Merger Arbitrage  Alpha Equities Multi Region Value Multiple Methods 
           Special Situations  Alpha Multi Asset Multi Region Value Multiple Methods 
Macro       
           Active Trading  Alpha Multi Asset Multi Region Multi Strategy Multiple Methods 
           Commodity Alpha Commodities Multi Region Multi Strategy Multiple Methods 
           Currency Alpha Currencies Multi Region Multi Strategy Multiple Methods 
           Systematic Diversified  Alpha Multi Asset Multi Region Multi Strategy Multiple Methods 
Relative Value       
           Fixed Income Alpha Rates and Credit Multi Region Value Multiple Methods 
           Volatility  Alpha Volatilities Multi Region Value Multiple Methods 
           Yield Alternatives Alpha Multi Asset Multi Region Value Multiple Methods 
Fund of Funds       
           Fixed Income Alpha Rates and Credit Multi Region Multi Strategy Multiple Methods 
           Volatility  Alpha Volatility Multi Region Multi Strategy Multiple Methods 
Emerging Market Alpha Multi Asset Emerging Market Multi Strategy Multiple Methods 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

For specific reporting hedge funds, we could have a more detailed classification of its regional focus and strategy style by 
examining both the reported style tilts as well as realized risk factor attributions. For example, Table 51 below gives some 
examples of hedge funds by examining their public disclosure of asset class focus/investment styles: 
 
Table 51: Illustrative Classification of Hedge Funds under the J.P. Morgan Cross Asset Risk Factor Framework 
 

Bloomberg 
Ticker 

Hedge Fund  
Name 

AUM  
(US$ mn) 

Launch 
Date 

Fund 
Currency 

Strategy 
Type 

Asset  
Class 

Regional 
Focus 

Strategy 
Style 

STAMWIF VI Winton Futures Fund Ltd 9,692 9/30/1997 USD Alpha Multi Asset Multi Region Multi Factor 

LANUEUI KY Lansdowne Developed 
Markets  8,150 7/31/2001 USD Alpha Equities EMEA Value 

CAPULAD KY Capula Global Relative Value 5,452 10/3/2005 USD Alpha Rates and 
Credit Multi Region Value 

TARPALE US Tarpon All Equities Fund LLC 3,170 9/29/2006 USD Alpha Equities Emerging 
Markets Multi Factor 

CCPQUAN KY CCP Quantitative Fund 2,300 3/1/2007 USD Alpha Multi Asset Multi Region Momentum 
and Value 

IRISLOW GU Managed Investments PCC 
Ltd - IRIS Low Volatility Cell 1,792 7/31/2007 USD Alpha Multi Asset Multi Region Volatility 

ARMAJCU KY Armajaro Commodities Fund  968 4/19/2004 USD Alpha Commodities Multi Region Momentum 

Source: Bloomberg, J.P. Morgan Quantitative and Derivatives Strategy. * For illustration purpose only. 
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Q: Can Hedge Fund strategies being systematically replicated? 
A: This is an area that deserves future research efforts and the answer so far is a qualified “yes”. Most existing hedge fund 
replicators strive to balance between absolute performance and tracking error against some benchmarks. Theoretically, if 
the hedge fund indices (before fees) cannot deliver alpha after controlling for a systematic replicator, it could reflect that 
discretionary judgment of the hedge fund managers may not add value on average. 

A simple illustration of the ex-post replicability of hedge strategies is to examine the sample correlation between hedge 
fund indices with Cross Asset risk factors. For example, Figure 105 below plots the pairwise correlation between the HFRI 
composite index with the cross-asset risk factors we introduced in Chapter 2. Consistent with our previous intuitions, on 
average hedge funds were significantly exposed to Traditional Equity and Commodities beta, Currency Carry, Equity 
Volatility and Carry Volatility risk factors, which performed poorly during realizations of tail events (see the increased 
correlation during the GFC). On the other hand, the hedge fund index’s negative correlation with Bond beta and Value 
factors may reflect these factors’ systematic diversification abilities rather than hedge fund's negative factor exposures. 

Figure 105: Correlation between HFRI composite (ex-FoFs) and Cross Asset Strategy Factors 

  
Source: J.P. Morgan Quantitative and Derivatives Strategy, HFR.  

Based on these findings, we create a simple Hedge Fund replicator using a fixed weight portfolio of 30% in Traditional 
Equity Beta (SPX), 5% in Traditional Commodities Beta (S&P GSCI), 10% in S&P 100 Index Implied-Realized Volatility 
Swap, and the rest in 1-month US$ Libor.  

Figure 106: HFRI composite index compared with a simple three-factor fixed weight replicator (Jan 1990 – Dec 2012)       

   
Source: J.P. Morgan Quantitative and Derivatives Strategy, HFR. 

74

34 31 29 24 13 13 10 7 7 5 0

-3 -5 -5 -5 -8 -8 -12
-31

-100
-80
-60
-40
-20

0
20
40
60
80

100

Correlation - Full Sample (Jan 1990 - Dec 2012)

Correlation During GFC (Aug 2007 - Mar 2009)

0

150

300

450

600

750

900

1050

1200

1350

1500

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

HFRIFWI (after fees) Fixed Weight Replicator

HFRI Composite

Annual ized Ex Return: 7.0%
Annualized Volatility: 7.0%

Sharpe Ratio: 1.01
Maximum Drawdown: -24.1% Fixed Weight Replicator

Annual ized Ex Return: 7.6%
Annualized Volatility: 6.3%

Sharpe Ratio: 1.21
Maximum Drawdown: -24.2%

167 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

Figure 106 above compares the historical performance of HFRI composite index and our fixed weight (FW) replicator. 
Despite the simplicity of our portfolio, it achieved a +77% historical correlation with the HFRI composite index, similar 
drawdowns and a higher Sharpe ratio during the period from Jan 1990 to Dec 2012.  

In reality, hedge funds are switching among different strategies according to their assessment of macro/market 
environments and fund managers’ timing/selection abilities. These dynamic features are not captured by the full-sample 
correlation coefficients or multiple regression betas. The issue of dynamic replication/super-replication of Hedge Fund sub-
strategies under a more general economic/statistical framework is a topic for future research. 
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Factor Rankings  
Table 52 reports the Sharpe ratios of the cross-asset factors introduced in Chapter 2, during different periods of Growth, 
Inflation, Volatility, and Funding/Market Liquidity regimes. For example, the traditional Commodities beta achieved a 
Sharpe ratio of 0.9 during “High Growth” regimes; while its Sharpe ratio was reduced to -0.1 during “Low Growth” regimes.  

Table 52: Overall Sharpe ratios of Cross-Asset factors amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Traditional-Equities 0.17 0.23 0.37 0.18 0.85 -0.16 0.90 0.67 -0.27 -0.06 0.51 0.38 -0.63 0.82 1.16 
Traditional-Bond 1.26 1.65 0.95 1.14 2.15 0.79 1.70 0.83 1.40 0.98 1.48 1.56 0.89 1.54 1.39 
Traditional-Currencies -0.23 0.44 -0.07 0.27 0.11 -0.24 0.30 -0.07 -0.04 -0.14 -0.02 0.37 0.16 -0.02 -0.02 
Traditional-Commodities -0.11 0.20 0.90 0.33 0.19 0.25 0.52 0.08 0.24 0.06 0.52 0.24 0.12 0.80 0.02 
Carry-Equities 1.02 0.31 0.57 0.86 0.43 0.82 0.63 0.12 0.87 0.32 0.68 0.72 0.97 0.56 0.39 
Carry-Bond 0.01 0.40 0.60 0.31 -0.29 0.72 0.63 0.24 0.08 0.24 0.37 0.63 0.13 0.62 0.20 
Carry-Currencies 0.54 0.79 0.86 0.67 0.53 1.09 0.74 1.05 0.47 0.61 0.58 0.98 0.47 0.59 1.14 
Carry-Commodities 0.49 0.02 0.47 0.36 -0.02 0.63 0.42 0.64 0.05 0.32 0.52 0.20 0.31 0.46 0.26 
Momentum-Equities 0.14 0.34 0.54 -0.16 0.76 0.26 0.47 0.55 0.05 0.43 0.33 0.25 0.26 0.56 0.24 
Momentum-Bond 0.29 0.96 0.51 0.73 0.90 0.35 0.69 0.27 0.70 0.25 1.02 0.66 0.02 0.96 0.85 
Momentum-Currencies -0.22 0.58 0.51 0.01 0.45 0.32 0.89 0.26 -0.17 0.14 0.12 0.66 -0.08 0.70 0.26 
Momentum-Commodities 0.38 0.60 0.65 0.43 0.57 0.63 1.22 0.36 0.21 0.81 0.44 0.36 0.27 0.90 0.49 
Value-Equities 0.25 0.65 0.56 0.25 0.29 0.89 1.06 0.44 0.20 0.29 0.18 1.04 0.51 0.60 0.26 
Value-Bond 0.63 0.03 0.90 0.23 0.05 1.06 0.53 0.26 0.92 1.02 0.05 0.41 1.26 0.21 0.17 
Value-Currencies 0.85 0.00 0.32 0.30 0.64 0.28 0.39 0.09 0.66 0.65 0.33 0.26 0.44 0.20 0.60 
Value-Commodities 0.11 0.42 0.00 0.22 0.31 0.03 -0.07 0.44 0.12 -0.07 0.08 0.53 0.04 0.20 0.34 
Volatility-Equities 0.23 0.88 0.53 0.42 0.76 0.25 0.81 0.60 0.44 0.17 0.72 0.49 0.32 0.38 0.82 
Volatility-Bond 0.19 0.54 1.28 0.36 0.71 - 0.47 1.26 0.18 -0.93 1.37 0.39 0.17 0.26 1.16 
Volatility-Currencies -0.06 2.46 1.14 0.43 1.29 - 1.74 1.62 -0.13 -2.42 1.40 1.63 -0.16 1.90 0.94 
Volatility-Commodities 1.04 0.72 0.57 0.60 1.42 - 0.95 1.02 0.70 0.00 1.34 0.79 0.51 0.78 1.25 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Table 53 ranks the factors under each regime with respective to their Sharpe ratios59 from high to low and calculates the 
average ranks for each factor style under all regimes and under the current regime (shaded columns). 

Table 53: Sharpe ratio ranks (from high to low) of Cross-Asset factors amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity Average Rank 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High All Current 
Traditional-Equities 13 16 17 18 5 16 6 6 20 16 11 14 20 5 4 12.5 10.9 
Traditional-Bond 1 2 3 1 1 5 2 5 1 2 1 2 3 2 1 2.1 1.6 
Traditional-Curncy 20 11 20 14 17 17 19 20 17 18 20 15 13 20 20 17.4 17.0 
Traditional-Comdty 18 17 5 11 16 13 14 19 9 14 9 19 15 6 19 13.6 14.9 
Carry-Equities 3 15 10 2 13 4 11 17 3 7 7 6 2 12 11 8.2 8.6 
Carry-Bond 16 13 8 12 20 6 12 16 14 11 13 9 14 9 17 12.7 12.6 
Carry-Currencies 6 5 6 4 11 1 9 3 7 5 8 4 6 11 5 6.1 6.3 
Carry- Comdty 7 19 16 9 19 7 17 7 16 8 10 20 9 14 15 12.9 14.4 
Momentum-Equities 14 14 12 20 6 12 15 9 15 6 15 18 11 13 16 13.1 15.7 
Momentum-Bond 9 3 15 3 4 9 10 13 4 10 5 8 17 3 7 8.0 6.1 
Momentum-Curncy 19 9 14 19 12 10 7 14 19 13 17 7 18 8 14 13.3 11.9 
Momentum- Comdty 8 8 7 7 10 8 3 12 10 3 12 16 10 4 10 8.5 8.0 
Value-Equities 10 7 11 15 15 3 4 10 11 9 16 3 4 10 13 9.4 8.9 
Value-Bond 5 18 4 16 18 2 13 15 2 1 19 12 1 17 18 10.7 14.1 
Value-Currencies 4 20 18 13 9 11 18 18 6 4 14 17 7 18 9 12.4 14.1 
Value-Commodities 15 12 19 17 14 15 20 11 13 17 18 10 16 19 12 15.2 15.0 
Volatility-Equities 11 4 13 8 7 14 8 8 8 12 6 11 8 15 8 9.4 9.3 
Volatility-Bond 12 10 1 10 8 - 16 2 12 19 3 13 12 16 3 9.8 11.4 
Volatility-Currencies 17 1 2 6 3 - 1 1 18 20 2 1 19 1 6 7.0 4.7 
Volatility- Comdty 2 6 9 5 2 - 5 4 5 15 4 5 5 7 2 5.4 4.6 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

59 We calculated the Reward-to-CVaR ratios under different regimes as well and find the results are broadly similar. 
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We find that our plain vanilla implementation of Traditional Bond beta, Currency Carry, Equity Carry, Bond Momentum, 
Currency Volatility and Commodity Volatility factors fared relatively well in Sharpe ratio terms on average. On the other 
hand, the performances of Commodity beta, Currency beta, Commodity Carry, Currency Momentum and Commodity Value 
did not perform as strongly. Similarly, Table 54 reports the average correlation of Cross-Asset factors with all the other 
factors, according to different periods of Growth, Inflation, Volatility, and Funding/Market Liquidity regimes. For example, 
the average correlation between Currency Carry with other factors was +11.8% during a “Low Inflation” regime; while the 
average correlation was reduced to a mild +3% during a "Mid Inflation" regime. 

Table 54: Average correlation (%) of Cross-Asset factors with other factors amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 

Traditional-Equities 7.1 -3.8 3.2 5.5 -1.7 0.5 -1.5 -2.1 6.0 8.9 0.0 1.3 5.8 -0.5 1.7 
Traditional-Bond -7.3 -1.3 -3.1 -6.1 -2.2 -1.3 -3.2 -2.0 -6.2 -4.7 -1.5 -5.9 -7.3 -2.6 -5.4 
Traditional-Currencies 6.2 -1.8 -2.0 6.3 1.3 -4.4 0.5 -2.0 3.8 0.9 1.7 4.1 4.0 2.0 -1.0 
Traditional-Commodities 7.6 -0.2 5.7 6.7 2.9 1.4 3.0 4.9 5.9 8.7 0.4 5.7 6.3 3.5 4.7 
Carry-Equities -2.6 1.7 -3.4 -1.6 -0.8 -8.1 -1.3 2.0 -2.5 -1.9 -3.0 -0.3 -3.3 0.4 -2.7 
Carry-Bond 1.2 2.3 3.8 2.0 2.0 2.6 5.9 0.9 0.2 4.6 1.2 0.9 2.2 4.0 0.4 
Carry-Currencies 11.8 3.0 4.4 10.6 4.4 3.0 5.3 2.9 9.7 10.7 3.4 8.1 9.7 4.2 6.8 
Carry-Commodities 1.3 0.1 0.9 -0.6 1.4 2.6 -1.6 0.9 1.5 4.7 -0.4 -1.2 3.4 -0.1 -2.6 
Momentum-Equities -2.8 0.3 1.2 -1.4 0.7 2.4 -2.5 1.0 -0.2 1.3 -1.3 1.3 1.0 -2.3 -1.2 
Momentum-Bond -2.9 0.9 7.5 -3.5 0.9 7.4 1.7 4.2 -0.3 0.7 0.6 -1.0 1.8 2.7 -5.5 
Momentum-Currencies -6.5 -0.2 1.7 -6.0 0.9 -0.6 -0.6 0.0 -4.9 -6.7 -4.8 1.2 -4.2 -3.5 -1.9 
Momentum-Commodities -0.7 -2.1 2.2 -0.6 1.4 -0.5 0.3 0.1 -1.2 -3.8 -2.1 1.4 0.0 -2.3 -0.9 
Value-Equities 1.7 0.9 -3.1 3.2 -3.7 -3.6 -0.7 0.7 0.6 2.0 -2.4 2.6 0.5 -3.8 4.3 
Value-Bond -4.4 -8.1 3.1 -6.0 -5.1 -1.9 -2.6 0.5 -4.9 -0.3 -4.2 -4.0 -6.1 2.9 -1.1 
Value-Currencies -10.4 1.0 0.7 -8.8 -2.3 2.9 -2.4 -2.0 -5.5 -5.6 -1.1 -4.0 -8.3 -0.2 -0.7 
Value-Commodities -8.3 -5.4 -5.4 -8.3 -5.6 -6.3 -4.5 -6.9 -7.7 -3.6 -5.9 -8.3 -7.7 -5.6 -5.0 
Volatility-Equities 5.6 2.4 5.9 5.6 0.5 7.9 -4.1 1.6 8.3 12.9 1.8 2.6 8.3 0.4 5.3 
Volatility-Bond 2.6 -0.1 -0.6 4.1 -4.6 - -2.5 -1.2 4.0 4.0 -4.8 2.3 0.7 -1.0 4.9 
Volatility-Currencies 6.0 3.7 1.7 4.9 4.4 - 4.9 0.0 5.4 2.8 2.2 4.1 3.7 -0.8 8.5 
Volatility-Commodities 5.3 -1.1 -0.7 4.1 -3.0 - -0.5 2.1 2.9 6.3 2.9 -0.4 5.5 -1.8 0.6 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Table 55 ranks the factors under each regime with respective to their average correlation with all the other factors from low 
to high and calculates the average ranks for each factor style for the current regime (shaded columns). 

Table 55: Average correlation ranks (from low to high) of Cross-Asset factors amid different Economic/Market Regimes 
 Growth Inflation Volatility Funding Liquidity Market Liquidity Average Rank 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High All Current 
Traditional-Equities 18 3 15 16 8 9 9 2 18 18 12 12 17 10 14 12.1 11.7 
Traditional-Bond 3 6 4 3 7 6 3 4 2 3 8 2 3 4 2 4.0 3.3 
Traditional-Curncy 17 5 5 18 14 3 15 3 14 9 16 17 15 15 9 11.7 13.7 
Traditional-Comdty 19 8 18 19 18 10 17 20 17 17 13 19 18 18 16 16.5 16.6 
Carry-Equities 8 16 2 7 9 1 10 16 6 6 5 8 6 14 4 7.9 9.6 
Carry-Bond 10 17 16 11 17 12 20 13 10 14 15 9 12 19 12 13.8 14.0 
Carry-Currencies 20 19 17 20 19 15 19 18 20 19 20 20 20 20 19 19.0 19.6 
Carry- Comdty 11 11 9 10 15 13 8 12 12 15 11 5 13 12 5 10.8 8.9 
Momentum-Equities 7 12 10 8 11 11 6 14 9 10 9 11 10 5 7 9.3 8.0 
Momentum-Bond 6 13 20 6 12 16 16 19 8 8 14 6 11 16 1 11.5 9.1 
Momentum-Curncy 4 9 11 5 13 7 12 8 4 1 2 10 5 3 6 6.7 7.0 
Momentum- Comdty 9 4 13 9 16 8 14 9 7 4 7 13 7 6 10 9.1 9.3 
Value-Equities 12 14 3 12 4 4 11 11 11 11 6 15 8 2 15 9.3 11.6 
Value-Bond 5 1 14 4 2 5 4 10 5 7 4 4 4 17 8 6.3 6.1 
Value-Currencies 1 15 8 1 6 14 7 5 3 2 10 3 1 11 11 6.5 7.0 
Value-Commodities 2 2 1 2 1 2 1 1 1 5 1 1 2 1 3 1.7 1.7 
Volatility-Equities 15 18 19 17 10 17 2 15 19 20 17 16 19 13 18 15.7 14.1 
Volatility-Bond 13 10 7 14 3 - 5 6 15 13 3 14 9 8 17 9.8 11.6 
Volatility-Currencies 16 20 12 15 20 - 18 7 16 12 18 18 14 9 20 15.4 16.6 
Volatility- Comdty 14 7 6 13 5 - 13 17 13 16 19 7 16 7 13 11.9 10.6 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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We find that Cross Asset Value strategies and the Traditional bond beta factor had the lowest average correlation with 
other factors on average and under the current macro/market regime. Consequently, they provided good diversification to a 
cross-asset multi-strategy portfolio. On the other hand, Traditional equity, currency, commodity beta factors, Cross Asset 
Carry factors, and Volatility factors had the highest average correlation with other factors - they provided the least 
diversification benefits.
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Implied Volatilities Across Assets 

 

   

Figure 107:  3M ATM Implied Volatilities for Equity Indices (%) 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 108: 3M ATM Implied Volatilities for Bonds (%) 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 109:  3M ATM Implied Vols for Interest Rate Swaps (bps) 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 110: 3M ATM Implied Volatilities for CDS Indices (bps) 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 111:  3M ATM Implied Volatilities for Currencies (%) 

 
 

Source: J.P. Morgan Quantitative and Derivatives Strategy.  

Figure 112: 3M ATM Implied Volatilities for Commodities (%) 

 
 
Source: J.P. Morgan Quantitative and Derivatives Strategy.  
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Independent Risk Factors 
 
Introduction 
In Chapter 2 of the main text, we constructed cross asset risk premium factors to represent generic Traditional, Carry, 
Momentum, Value and Volatility risk factor styles and studied the long-run risk-return properties, inter-correlations as well 
as tail risks of the related Toy Models. We hypothesize that these cross-asset risk factors represent independent sources of 
systematic risk premia in an “idealized world”, which is usually different from the “real world”60. To visualize their 
connections, one could imagine the idealized world as some rotation and compression/stretching of the real world financial 
markets (and vice versa).  

Figure 113: Independent Risk Factors in an idealized world become dependent in Real World 
 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

As investors are most concerned with performance and risk in the real world, one may wish to construct real-world 
independent risk factors. The requirement of risk factor independence in the real financial world is relevant in both 
understanding the source of risk and in effective portfolio diversification/risk management. The 2007-08 Global Financial 
Crisis exemplifies investors’ poor understanding of risks as the failure to truly diversify led to widespread negative 
portfolio returns when many assets/investment strategies become highly correlated.  Many investments were exposed to 
common risk factors at a time when diversification was most needed. Instead, portfolios with exposure to multiple 
independent risk premia sources could fare well even during financial turbulence. Moreover, there are two general benefits 
from investing in additional independent factors: (1) investors could also achieve better risk-adjusted rewards and, (2) risk 
hedging is more straightforward with independent factors.  

How do we define the Independence of Risk Factors? One important economic rationale is that the distribution of each risk 
factor should represent the distribution of some insurance-selling on a specific type of risk. This property guarantees 
collection of insurance premium on the associated risk in “normal” times with the promise of suffering losses when such 
risk materializes and the insurance payment is due. Moreover, the long-term insurance premium collected in normal 
times should more than compensate for the loss in bad times, so that investment managers could justifiably own the 
corresponding risk and collect the long-term associated premia by providing such liquidity. Since the “bad time” for each 
independent risk factor is usually independent as well, the insurance payments for all risk factors should not come due 
simultaneously, yielding a better diversified portfolio. Based on these assumptions, we could design some statistical 
procedure to estimate the independent risk factors from the original set of cross-asset risk factors. Interested readers can 
refer to our mathematical derivations in the subsequent sections for more technical details. 

60 Similarly, asset pricing theories suggest that discounted security prices are martingales in a “risk-neutral” world, which is usually 
different from the real world characterized by average risk aversion. A change of measure is needed to move between the “risk-neutral” 
world and the real world. 
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The first step towards independent risk factors is to estimate the principal component factors or uncorrelated risk factors. 
As described Chapter 2, this can be done by finding the eigenvectors of the factor covariance matrix. Besides the risk 
contribution profile of the principal components in the main text, Table 56 below shows the reward-risk metrics of the 
principal components (denoted by PCx) of the 20 Cross-Asset Toy Model factors.  

We find that the Sharpe ratios of the principal components are generally smaller than the original cross asset risk factors 
and that the drawdown was generally more severe. This comes at no surprise, as principal components are by construction 
only concerned with explaining the core risk (variance) of the original risk factors and they are not designed to achieve 
reasonable risk premia factor profiles. 

Table 56: Principal Components of Cross Asset Risk Factors ranked by % of variance explained (Jan 1972 – Dec 2012) 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Average (%) 8.9 1.0 2.9 3.1 5.6 1.0 8.0 4.3 1.6 8.1 
CAGR (%) 6.5 -0.8 1.4 1.8 5.1 0.4 7.8 3.9 1.1 8.0 
STDev (%) 22.8 18.7 17.6 15.6 11.9 11.5 9.6 10.1 9.7 8.5 
MaxDD (%) -63.8 -72.1 -56.8 -57.2 -34.6 -37.3 -47.9 -39.0 -37.4 -26.8 
MaxDDur (in yrs) 9.1 30.2 24.6 18.8 15.1 23.3 5.4 9.0 23.9 4.1 
Sharpe Ratio 0.39 0.05 0.16 0.20 0.47 0.09 0.83 0.43 0.16 0.96 
Sortino Ratio 0.61 0.07 0.24 0.28 0.92 0.13 1.37 0.66 0.24 1.67 
Calmar Ratio 0.31 0.02 0.18 0.30 0.47 0.07 0.58 0.47 0.14 1.08 
Pain Ratio 0.39 0.03 0.09 0.10 0.47 0.05 1.26 0.57 0.09 1.99 
Correl with SPX 0.23 -0.54 -0.03 0.22 0.20 0.54 0.00 -0.20 -0.07 0.30 
Correl with UST 0.09 0.14 0.01 0.68 0.11 -0.03 0.05 -0.01 0.27 -0.01 
Skewness 0.05 0.20 0.00 -0.50 3.16 0.03 -0.35 -0.26 -0.18 -0.12 
Kurtosis 2.28 2.98 2.00 2.10 32.65 1.11 2.69 2.77 0.57 0.97 

 

 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 
Average (%) 2.0 0.1 6.5 2.7 2.6 0.8 8.6 3.2 1.1 2.1 
CAGR (%) 1.7 -0.2 6.4 2.5 2.4 0.6 8.8 3.1 1.0 2.1 
STDev (%) 8.7 7.5 7.8 7.0 6.6 6.2 5.7 5.3 4.2 2.8 
MaxDD (%) -30.3 -46.3 -24.1 -41.8 -21.0 -28.4 -8.0 -17.0 -14.1 -6.3 
MaxDDur (in yrs) 11.8 32.8 4.9 27.8 12.8 14.1 1.8 8.0 9.5 3.8 
Sharpe Ratio 0.23 0.02 0.84 0.38 0.39 0.13 1.50 0.61 0.26 0.74 
Sortino Ratio 0.35 0.02 1.81 0.64 0.59 0.19 3.05 0.97 0.38 1.25 
Calmar Ratio 0.16 0.02 0.85 0.56 0.14 0.13 1.55 1.19 0.17 0.55 
Pain Ratio 0.22 0.00 1.89 0.14 0.48 0.08 7.58 0.98 0.30 1.77 
Correl with SPX -0.12 0.08 0.04 -0.09 -0.18 0.07 -0.09 0.19 0.14 0.04 
Correl with UST -0.01 -0.07 0.38 0.05 0.05 0.48 -0.10 0.13 -0.08 -0.03 
Skewness -0.06 -0.26 3.05 0.83 -0.15 0.00 0.00 -0.34 -0.14 -0.08 
Kurtosis 1.94 3.44 30.97 5.71 0.86 1.85 0.55 4.09 1.32 0.63 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

While investors frequently use the top principal components to conduct analysis, they may have ignored the less volatile 
but potentially more important risk premium sources. Moreover, the principal components were sometimes falsely 
regarded as independent factors, which could lead to misunderstanding and misjudgment when the original risk sources are 
significantly non-normal. Based on the principal components of cross asset risk factors, we move a step further to pursue 
independent sources of priced systematic risks. The independent factors are generated via maximizing a certain non-
normality measure of the joint distribution. Each factor targeted a 10% volatility level for easy comparisons.  

Independent Factors in Portfolio Applications 
Consider that we have multiple sources emitting signals that are interfering with each other (e.g. people speaking at the 
same time in a room) and only mixed signals are recorded. The task of Blind Source Separation (BSS) is to find the “un-
mixing matrix” that could restore the original sources of signals. If we consider the original signals as the sources of risk 
premia, the ICA (“Independent Component Analysis”) method61 exactly fits our purpose in identifying independent risk 
factors (Figure 114). To simplify the expositions here, we leave the technical details for estimating the independent risk 
factors to the next section.  

61 See Jutten and Hérault (1991) and Comon (1994). 

 174 

                                                 



 
 

Global Quantitative and Derivatives Strategy 
11 December 2013 

Marko Kolanovic 
(1-212) 272-1438 
marko.kolanovic@jpmorgan.com 

  
  
  

  

 

Figure 114: From Cross Asset Risk Factors to Independent Factors 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

Table 57 shows the historical risk-reward profiles of the independent risk factors (labeled as RFx) during the period from 
Jan 1972 to Dec 2012. Compared with Top 10 principal components, the Top 10 independent factors had higher Sharpe 
ratio, less drawdown and higher excess kurtosis (or fatter tail distribution). On the other hand, the bottom 5 independent 
risk factors were rewarded poorly and exhibited significant drawdowns. As a result, gaining positive exposures to the top 
independent risk factors and hedging against the bottom independent risk factors could be a viable solution for a better 
long-term portfolio. In Table 58, we show the correlation matrix of the 20 independent risk factors: These independent 
factors had zero correlation during the full sample period (by construction) and their average correlations during crises (and 
during the recent GFC) were generally close to 0 or slightly negative.  

Table 57: Performance-Risk Metrics for Independent Risk Factors ranked by historical Sharpe ratio (Jan 1972 – Dec 2012) 
 RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 
Average (%) 10.6 10.0 8.3 7.1 6.8 6.5 5.7 5.6 5.2 4.6 
CAGR (%) 10.6 10.0 8.1 6.8 6.5 6.2 5.3 5.2 4.9 4.1 
STDev (%) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
MaxDD (%) -26.5 -18.4 -19.6 -33.9 -28.4 -31.1 -13.0 -31.9 -37.5 -58.4 
MaxDDur (in yrs) 2.0 2.1 6.3 4.8 7.0 3.2 3.2 5.7 7.4 6.6 
Sharpe Ratio 1.06 1.00 0.83 0.71 0.68 0.65 0.57 0.56 0.52 0.46 
Sortino Ratio 1.81 1.74 2.20 1.22 1.18 0.93 1.24 0.89 0.84 0.58 
Calmar Ratio 0.53 0.55 1.37 0.74 0.73 0.53 0.44 0.42 0.66 0.45 
Pain Ratio 4.18 3.35 2.38 1.16 1.12 1.72 1.93 0.74 0.61 0.66 
Correl with SPX 0.23 -0.54 -0.03 0.22 0.20 0.54 0.00 -0.20 -0.07 0.30 
Correl with UST 0.09 0.14 0.01 0.68 0.11 -0.03 0.05 -0.01 0.27 -0.01 
Skewness -0.60 -0.17 6.02 0.31 0.57 -2.09 5.67 -0.06 0.06 -5.11 
Kurtosis 5.98 0.99 76.28 1.87 3.49 19.49 77.28 0.84 0.38 61.19 

 

 RF11 RF12 RF13 RF14 RF15 RF16 RF17 RF18 RF19 RF20 
Average (%) 4.6 4.4 4.3 3.7 3.7 3.3 2.0 1.9 1.2 0.1 
CAGR (%) 4.2 4.0 3.9 3.2 3.2 2.8 1.5 1.4 0.7 -0.4 
STDev (%) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
MaxDD (%) -34.2 -26.9 -26.9 -56.3 -29.1 -36.6 -33.5 -40.4 -34.9 -66.0 
MaxDDur (in yrs) 7.1 5.2 11.0 17.9 16.2 13.3 17.1 23.7 18.3 39.3 
Sharpe Ratio 0.46 0.44 0.43 0.37 0.37 0.33 0.20 0.19 0.12 0.01 
Sortino Ratio 0.67 0.69 0.74 0.52 0.58 0.60 0.30 0.28 0.17 0.02 
Calmar Ratio 0.27 0.33 0.52 0.30 0.53 0.16 0.14 0.20 0.11 0.01 
Pain Ratio 0.48 0.73 0.83 0.28 0.29 0.29 0.16 0.12 0.08 0.00 
Correl with SPX -0.12 0.08 0.04 -0.09 -0.18 0.07 -0.09 0.19 0.14 0.04 
Correl with UST -0.01 -0.07 0.38 0.05 0.05 0.48 -0.10 0.13 -0.08 -0.03 
Skewness -0.55 -0.23 1.94 -0.84 0.42 3.12 0.69 0.13 -0.24 0.33 
Kurtosis 2.35 7.03 20.36 2.96 5.75 31.17 10.89 3.35 3.24 1.44 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 
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Table 58: Sample correlation between Independent Risk Factors during Jan 1972 to Dec 2012 

Color Scheme Less than -30% -30% to -10% -10% to +10% +10% to +30% Greater than +30% 

                     

  Risk 
Factor 1 

Risk 
Factor 2 

Risk 
Factor 3 

Risk 
Factor 4 

Risk 
Factor 5 

Risk 
Factor 6 

Risk 
Factor 7 

Risk 
Factor 8 

Risk 
Factor 9 

Risk 
Factor 10 

Risk 
Factor 11 

Risk 
Factor 12 

Risk 
Factor 13 

Risk 
Factor 14 

Risk 
Factor 15 

Risk 
Factor 16 

Risk 
Factor 17 

Risk 
Factor 18 

Risk 
Factor 19 

Risk 
Factor 20 

Risk Factor 1   2 7 -4 34 -15 -2 2 -23 -5 -3 29 -13 4 -17 5 0 -5 6 0 
Risk Factor 2 0   -10 -4 12 16 -8 -10 13 10 -29 0 21 0 18 -15 17 -13 6 15 
Risk Factor 3 0 0   16 6 -13 4 -6 -2 -1 5 7 6 -1 -2 2 -35 9 0 -1 
Risk Factor 4 0 0 0   10 36 -5 3 -16 12 -2 0 20 -10 -19 -3 17 -15 20 -8 
Risk Factor 5 0 0 0 0   -5 -13 -10 -18 -20 -13 7 15 20 12 6 4 -24 3 1 
Risk Factor 6 0 0 0 0 0   -6 -19 8 25 -26 -9 15 7 -3 4 15 -5 14 -8 
Risk Factor 7 0 0 0 0 0 0   -2 1 9 16 -3 -10 -4 5 -2 -13 -2 -2 5 
Risk Factor 8 0 0 0 0 0 0 0   4 -10 -5 -26 -4 -27 8 -11 -21 -5 -11 7 
Risk Factor 9 0 0 0 0 0 0 0 0   -3 -16 13 1 22 4 0 3 18 -23 22 
Risk Factor 10 0 0 0 0 0 0 0 0 0   -2 -4 -4 -4 2 -10 8 11 10 3 
Risk Factor 11 0 0 0 0 0 0 0 0 0 0   -35 0 -22 -21 7 7 -9 1 -12 
Risk Factor 12 0 0 0 0 0 0 0 0 0 0 0   1 6 -11 5 11 23 6 -8 
Risk Factor 13 0 0 0 0 0 0 0 0 0 0 0 0   1 -2 3 -15 -35 7 3 
Risk Factor 14 0 0 0 0 0 0 0 0 0 0 0 0 0   -7 1 -5 15 12 -12 
Risk Factor 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0   -6 -13 17 -14 21 
Risk Factor 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 -4 4 6 
Risk Factor 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   1 -1 -1 
Risk Factor 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   6 2 
Risk Factor 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   -14 
Risk Factor 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   

                                          
Full Sample Ave 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Crisis Average 0 2 0 2 1 2 -2 -8 0 1 -8 1 0 0 -1 0 -1 -1 2 1 
Ave During GFC -2 1 -6 -4 -6 -2 -11 -9 1 -1 -7 0 -7 -1 -7 -4 1 4 -1 0 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Lower triangular statistics are the all-sample pair-wise correlation and upper triangular are the correlation statistics during crisis periods. ** Crisis periods we include for the correlation calculation are Oct 
1973—Mar 1974 (OPEC Oil Crisis), Aug 1982 – Oct 1983 (Latin America debt crisis), July 1990 - Mar 1991 (US saving & loan crisis), Jul 1997 - Sep 1998 (Asian Financial Crisis, Russian Default and LTCM), and Aug 2007 - Mar 2009 (Global Financial Crisis or 
GFC). 
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Figure 115 below shows the historical P/L (in excess return) of US$100 in Dec 1971 for an equal weighted (with 2x 
leverage) position on the top 4 independent risk factors. Annual excess returns from 1972 to 2012 for such a strategy are 
also listed below the figure and we find that one could achieve absolute return by exposure to only four independent factors. 

Figure 115: P/Ls of Top 4 Independent Risk Factors and a leveraged Equal Weighted portfolio (with annual excess returns since 1972)  
 

 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

In Chapter 3, we have shown the risk contribution of cross asset factors to the independent risk factors in order to identify 
their connections. In addition, we could examine the source of cross asset factor correlations by identifying their related risk 
exposure to independent factors in Table 59. As explained in the next section, these risk contributions are proportional to the 
squared value of correlations to the corresponding risk factor. As a result, the risk contribution could also be derived from 
the correlation matrix between cross asset risk factor and the independent risk factors, in Table 60. 

Table 59: Risk Contribution Profile (%) of Cross Asset Risk Factors from their Independent Components (Jan 1972 – Dec 2012) 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. * Each cell (by row) represents the total risk contribution (in percentage) of independent risk factors to each Cross asset risk factor. 
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Annual Return: 18%
Annual Volatilty: 10%
Maximum Drawdown: -13.7%
Max Drawdown Duration: 1.5 Years
Sharpe Ratio: 1.8
Gain to Pain: 4.1
Skewness: 0.5
Kurtosis: 5.5

Right Hand Side 

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
16.1 25.3 4.5 29.3 26.9 24.0 24.1 16.1 -2.7 21.5 53.8 20.8 16.8 32.4
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
22.1 0.4 32.2 16.4 12.4 19.2 23.2 27.9 5.5 18.0 34.3 27.9 15.6 2.6
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
24.4 13.7 32.7 25.2 19.7 21.1 14.1 6.5 11.4 4.6 11.0 25.5 21.4

RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 RF11 RF12 RF13 RF14 RF15 RF16 RF17 RF18 RF19 RF20
Traditional-Equities 5 29 0 5 4 29 0 4 1 9 2 1 0 1 3 1 1 4 2 0
Traditional-Bond 1 2 0 46 1 0 0 0 7 0 0 0 14 0 0 23 1 2 1 0
Traditional-Currencies 2 11 0 0 0 8 0 1 27 5 0 1 4 6 2 6 15 2 0 9
Traditional-Commodities 11 5 0 0 17 0 1 39 1 14 0 0 0 3 2 2 1 0 0 3
Carry-Equities 1 0 0 0 0 6 87 0 0 1 0 0 0 0 1 0 0 1 0 1
Carry-Bond 0 0 51 1 0 2 0 0 0 0 0 0 41 0 0 0 0 3 0 0
Carry-Currencies 9 0 1 0 0 0 0 0 5 16 30 34 2 1 0 0 0 0 0 0
Carry-Commodities 1 0 0 1 1 0 0 10 6 2 1 0 3 4 8 1 6 0 16 39
Momentum-Equities 0 2 1 7 0 0 0 0 16 0 0 1 0 0 4 0 67 0 0 0
Momentum-Bond 5 1 1 13 0 9 0 0 0 1 0 1 13 0 0 2 0 54 0 0
Momentum-Currencies 3 1 1 0 0 5 0 0 0 9 33 30 2 0 1 2 11 2 0 2
Momentum-Commodities 2 0 0 1 20 1 0 15 1 0 1 1 1 17 3 0 1 0 30 4
Value-Equities 1 19 0 0 2 2 1 9 1 1 0 0 0 3 52 0 1 0 1 7
Value-Bond 2 0 56 6 0 0 0 0 1 0 1 2 28 0 0 2 0 0 1 0
Value-Currencies 3 1 0 0 1 18 0 2 8 14 4 37 2 4 1 3 0 0 0 1
Value-Commodities 0 7 0 0 5 0 0 6 3 1 0 1 0 1 4 5 2 0 39 27
Volatility-Equities 0 10 0 6 12 28 0 2 0 27 2 0 0 2 0 8 0 1 0 1
Volatility-Bond 45 2 0 3 1 1 0 10 1 1 2 0 0 1 0 21 0 1 1 10
Volatility-Currencies 0 0 0 0 0 2 1 1 4 43 3 2 1 8 0 32 1 0 2 0
Volatility-Commodities 15 0 0 9 6 0 4 0 1 4 2 2 0 41 0 14 0 0 0 0
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Table 60: Correlation between Cross Asset Risk Factors and Independent Risk Factors (Jan 1972 – Dec 2012) 

  
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

From Table 59 and Table 60 (two Tables above), we could identify interesting sources of cross asset and cross factor 
correlations. For example, we find that the Currency Carry, Currency Momentum and Currency Value Strategies are 
significantly exposed to RF10, RF11 and RF12 factors: the Currency Carry factor had long exposure to RF10, RF11 and 
RF12; Currency Momentum factor is long RF11 while short RF10 and RF12; Currency Value is long RF12 while short 
RF10 and RF11. Moreover, while the significant positive correlation between the Equity beta and Equity Volatility factors 
mainly arose from their common positive exposure to RF6 and RF10 factors, the positive correlation between Equity beta 
and Currency carry was because of their common exposure to RF1 and RF10 factors. In summary, the independent risk 
factors can shed additional light to the sources of risk and correlations of alternative risk factors. 
 

Mathematical Derivations 
 
For interested readers, we provide some high-level mathematical derivations on principal components as well as 
independent factors in this section. It covers the calculation of risk contributions, factor correlations, factor hedging, as well 
as optimal portfolio Sharpe ratios with independent factors. 

Following the notations from the section on Portfolio Construction Methodologies, we examine the technicalities in 
examining Independent Component Analysis (ICA) of Cross Asset Risk Factors. Suppose we have N time series of factor 
returns 𝑹 = (𝒓1, … , 𝒓𝑁), our aim to is find a weighting matrix 𝑾 = (𝒘1, … ,𝒘𝑁) = � 𝑤𝑖𝑗�𝑁×𝑁

 so that the mixed factors  

𝑭 = (𝒇1, … ,𝒇𝑁) = 𝑹 × 𝑾 = (𝑹𝒘1, … ,𝑹𝒘𝑁) 

are independent sources of systematic risks. Suppose the weighting matrix 𝑾 is invertible (the factors represent a non-
degenerate set of mixed risks) and 𝑽 = 𝑾−1, then the factor returns could be represented by linear combinations of 
independent risk premia: 

𝑹 = 𝑭 × 𝑽 = (𝑭𝒗1, … ,𝑭𝒗𝑁) 

 
  

RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 RF11 RF12 RF13 RF14 RF15 RF16 RF17 RF18 RF19 RF20
Traditional-Equities 23 -54 -3 22 20 54 0 -20 -7 30 -12 8 4 -9 -18 7 -9 19 14 4
Traditional-Bond 9 14 1 68 11 -3 5 -1 27 -1 -1 -7 38 5 5 48 -10 13 -8 -3
Traditional-Currencies 16 -33 4 -5 -5 -28 -5 -10 52 23 1 11 20 -24 -15 25 38 -13 1 30
Traditional-Commodities 33 -23 5 -1 -41 2 -11 63 -7 38 -5 -1 -1 -17 15 -14 9 -3 4 16
Carry-Equities 10 -2 -2 -7 3 -25 93 5 2 9 -2 3 -3 2 12 4 -3 -8 3 12
Carry-Bond -2 6 71 8 2 -14 -1 -6 -6 6 0 6 -64 0 -5 3 2 18 -3 6
Carry-Currencies 30 2 -7 -5 3 6 -7 0 -22 39 55 58 -14 -11 -6 5 -6 2 -4 5
Carry-Commodities -12 -6 -4 -9 12 4 -1 31 25 15 10 2 -16 -19 28 9 25 6 40 -63
Momentum-Equities 1 16 -9 27 2 -3 5 1 -40 -3 -4 11 4 -4 20 -4 82 3 -6 -3
Momentum-Bond 21 9 12 36 3 30 3 0 2 -8 -5 -8 -36 0 0 14 -5 -74 1 -5
Momentum-Currencies 18 -8 7 -4 0 23 3 0 2 -29 57 -55 -14 1 -7 15 33 13 -2 13
Momentum-Commodities 15 3 -2 -12 45 9 0 39 12 4 -10 -8 -7 -42 19 6 8 2 -55 -20
Value-Equities 11 44 4 -4 -14 -12 7 30 11 9 0 -3 0 18 -72 -3 7 -2 -10 -27
Value-Bond -15 0 75 -25 -3 3 3 1 -7 4 10 15 52 3 -2 -15 -4 -3 -9 -7
Value-Currencies -18 9 -1 3 -10 42 4 13 29 -37 -21 61 -14 20 10 -18 -4 6 3 9
Value-Commodities 1 26 5 6 21 -3 -3 -23 -16 -9 2 7 7 7 -21 -22 -14 -6 63 52
Volatility-Equities -3 31 -3 -25 -34 53 4 -15 3 52 -16 0 -7 -13 5 28 4 10 6 11
Volatility-Bond 67 16 -1 -17 -11 8 -1 -32 10 -8 -14 4 0 -10 6 -46 1 11 8 -32
Volatility-Currencies 6 7 -3 0 5 13 -12 -9 21 66 17 -13 -9 27 5 -56 9 4 -13 3
Volatility-Commodities 39 0 -2 -30 25 -3 -20 -2 -7 21 -15 13 -4 64 5 38 0 0 5 7
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Principal Components and Uncorrelated Factors 
The first step towards independence is to create principal components, which are orthogonal transformations (or rotations) 
of original factors so that the “principal components” are uncorrelated. By definition, the principal components of the 
factors are created by its eigenvector rotations so that the “rotated” factors are uncorrelated and the variance of factor 
principal components corresponds to the eigen-values of the factor covariance matrix 𝚺 = Cov(𝑹,𝑹)=� 𝜎𝑖𝑗�𝑁×𝑁

.  

Specifically, suppose the eigen-value decomposition of 𝚺 is given by  

𝚺 = 𝑬𝑫𝑬𝑻 

where 𝑬 = (𝒆1, … , 𝒆𝑁) are the eigen-vectors so that 𝑬𝑬𝑻 = 𝑬𝑻𝑬 = 𝑰 (identity matrix) and 𝑫 = diag(𝑑1, … ,𝑑𝑁) is a 
diagonal matrix of eigen-values (usually ranked by descending order). Since the covariance matrix 𝚺 is positive semi-
definite, the diagonal elements of 𝑫 are non-negative. 

By construction, the covariance matrix of the “rotated” factors or “principal components” 𝑷𝑐 = 𝑹 × 𝑬 = (𝑹𝒆1, … ,𝑹𝒆𝑁) is 
given by 

cov(𝑷𝑐 ,𝑷𝑐) = 𝑬𝑻𝚺𝑬 = 𝑫 

As a result, the principal components as linear combinations of original factors are uncorrelated and their variances are 
given by the diagonal elements of matrix 𝑫 or the eigen-values.  

Risk Contribution of Principal Components 
To understand how the principal components relate to the original set of risk factors, we can evaluate their risk contribution 
profiles. By definition, the i-th principal component of the risk factors is given by 𝑹𝒆𝑖 where the i-th eigen-vector 𝒆𝑖 
represents the (leveraged) weights. Furthermore, from the identity 𝑬𝑻𝚺𝑬 = 𝑫, we have 𝚺𝒆𝑖 = 𝑑𝑖𝒆𝑖 and 𝒆𝑖𝑇𝚺𝒆𝑖 = 𝑑𝑖 for all i. 

In the section on Portfolio Construction Methodologies, we suggested that the risk contribution (in percentage) is equal to 
beta times weight. The beta vector (on the original factors) for the i-th principal component is given by 

𝜷(𝑷𝑖𝑐 relative to 𝑹) =
𝚺𝒆𝑖
𝒆𝑖𝑇𝚺𝒆𝑖

=
𝑑𝑖𝒆𝑖
𝑑𝑖

= 𝒆𝑖 

which is exactly the i-th eigen-vector, the same as the corresponding factor weights.  

As a result, the vector 𝒆𝑖 ∙ 𝒆𝑖 = (𝑒1𝑖2 , … , 𝑒𝑁𝑖2 )𝑇 describes the risk contribution of the original risk factors on the i-th principal 
component.   

Moreover, we could also evaluate the risk contribution of the principal components to the original risk factors by noting the 
fact that 

𝑹 = 𝑷𝑐 × 𝑬𝑻 = (𝑷𝑐𝒆1𝑟 , … ,𝑷𝑐𝒆𝑁𝑟 ) 

where 𝒆𝑖𝑟 is the i-th column of the transposed eigen-vector matrix (or the i-th row vector of 𝑬). Furthermore, from the 
identity 𝚺 = 𝑬𝑫𝑬𝑻, we have (𝒆𝑖𝑟)𝑇𝑫𝒆𝑖𝑟 = 𝜎𝑖2 for all i. 

Hence, the beta vector (on the principal components) for the i-th factor is given by 

𝜷(𝒓𝑖 relative to 𝑷𝑐) =
𝑫𝒆𝑖𝑟

(𝒆𝑖𝑟)𝑇𝑫𝒆𝑖𝑟
=
𝑫𝒆𝑖𝑟

𝜎𝑖2
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As a result, the vector (𝑫𝒆𝑖𝑟 ∙ 𝒆𝑖𝑟)/𝜎𝑖2 = (𝑑1𝑒𝑖12 /𝜎𝑖2, … ,𝑑𝑁𝑒𝑖𝑁2 /𝜎𝑖2)𝑇 describes the risk contribution of the principal 
components on the i-th risk factor component.   

Independent Risk Factors and Non-Normality 
It is well known that zero-correlation does not necessarily lead to independence, and hence the principal components are not 
necessarily the independent risk factors we are looking for. In Mathematical terms, the two factors 𝒇1 and 𝒇2 are 
independent if and only if their joint probability density function can be written as the product of the marginal density 
functions:  

𝑝𝒇1,𝒇2(𝒇1,𝒇2) = 𝑝𝒇1(𝒇1) × 𝑝𝒇2(𝒇2) 

In effect, we need to identify another transformation 𝑮 of the principal components into truly independent risk factors: 

𝑭 = (𝒇1, … ,𝒇𝑁) = 𝑷𝑐 × 𝑮 = (𝑹 × 𝑬) × 𝑮 = 𝑹 × (𝑬 × 𝑮) 

So we can finally arrive at the loading matrix on the original set of factors 𝑾 =  𝑬 × 𝑮. 

While the criterion for principal components derives naturally from eigen-values of factor covariance/correlation matrix (or 
Singular Value Decomposition of the factors), the criterion for independent risks could be hard to define statistically. 
Instead, we first define an independent risk premium (or risk factor) by its economic and financial market meaning and then 
use an optimization program to derive factors satisfying such a definition. 

One important economic rationale for the definition of independent risk source is that the distribution of each risk factor 
should represent the distribution of some insurance-selling on a specific type of risk the corresponding factor represents. 
This property guarantees collection of insurance premium on the associated risk in “normal times” at the promise of 
incurring large losses when such risk materializes and the insurance payment is due. Moreover, the long-term insurance 
premium should more than compensate for the loss in bad times so that investment managers could justifiably own the 
corresponding risk and collect the long-term associated premia. Based on these assumptions, two basic statistical properties 
of an independent risk factor are: (1) it should have a long-term positive average return and (2) it should follow some fat-tail 
distribution (tail fatness is usually benchmarked against a comparable normal distribution).  

Statistically, while the first requirement is easy to satisfy, the second requirement needs some measurement of “Non-
Normality”. By the Central Limit Theorem, the sum of many independent fat-tailed risk factors has a distribution that is 
closer to a normal distribution than the individual risk factors. As a result, the principal components should be closer to 
normal distributions than the independent components. With regard to our targeted independent factors, there are two basic 
measurements of normality:  

(1) Excess kurtosis defined by 𝐊𝐮𝐫𝐭(𝑿) = 𝑬 ��𝑿 − 𝑬(𝑿)�4� �𝐕𝐚𝐫(𝑿)�2� − 3 

(2) Negative Entropy defined by 𝐍𝐞𝐠𝐄𝐧𝐭𝐫𝐨𝐩𝐲(𝑿) = 𝑯(𝑿Normal) −𝑯(𝑿), where 𝑯(𝑿) = 𝑬[−log(𝑝(𝑿))] is the entropy 
function on factor 𝑿 and 𝑯(𝑿Normal) is the entropy function for a normal variable of the same covariance matrix as 𝑿. 

Since the negative entropy function is always non-negative and is zero only if the underlying factor is a normal variable, one 
could design some optimization program (e.g. based on a generalized Newton-Raphson procedure) to maximize the 
negative entropy to achieve non-normality of risk factors. In our demonstration of independent risk factors, we use the 
popular FastICA algorithm to estimate the parameters. Once the rotation matrix 𝑾 is estimated, factor risk contribution 
profiles could be calculated similar to the case of principal components. 
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Optimal Portfolio Sharpe Ratio 
In the section on Portfolio Construction Methodologies, we showed that the optimal portfolio Sharpe ratio for a set of 
factors is given by: �𝝁𝑇𝚺−1𝝁 = √𝑺𝑇𝑪−1𝑺, where 𝚺 and 𝑪 are the covariance and correlation matrices of the underlying 
factors; 𝑺 = (𝑠1, … , 𝑠𝑁)𝑇 be a 𝑁 × 1 vector of Sharpe ratios so that 𝑠𝑖 = 𝜇𝑖 𝜎𝑖⁄  for any i.  

In the case of independent factors, the correlation matrix 𝑪 is an identify matrix and hence we have 

Optimal Sharpe Ratio = �𝑺𝑇𝑪−1𝑺 = �𝑺𝑇𝑺 = �� 𝑠𝑖2
𝑁

𝑖=1
 

As a result, adding an independent risk factor would always improve portfolio Sharpe ratio as long as factors are optimally 
weighted.  

 
Common Risk exposure to Independent Factors 
Financial researchers usually attribute correlation between asset classes, risk factors, investment strategies, etc to their 
common exposure to certain independent sources of risk. Here, we provide a framework to quantify that correlation. 

We have shown in the last section that the factor sensitivity of an arbitrary portfolio (or risk factor, asset class) with respect 
to a certain independent risk factor of unit variance is given by portfolio volatility times corresponding factor correlation, 
which hold in the presence of multiple independent risk factors as well. As a result, for any two portfolios 𝑷1 and 𝑷2, we 
can write them as representations of the independent factors: 

𝑷1 = � 𝛽1𝑖𝒇𝑖 + 𝜖1
𝑁

𝑖=1
   and   𝑷2 = � 𝛽2𝑖𝒇𝑖

𝑁

𝑖=1
+ 𝜖2 

where 𝛽1𝑖 = 𝜎𝑷1Corr(𝑷1,𝒇𝑖) = 𝜎𝑷1𝝃1𝑖 and 𝛽2𝑖 = 𝜎𝑷2Corr(𝑷2,𝒇𝑖) = 𝜎𝑷2𝝃2𝑖. 

If we assume 𝜖1 and 𝜖2 are independent with 𝜎(𝜖𝑖) = 𝜎𝑷𝑖𝝃𝜖𝑖, it follows that 

Corr(𝑷1,𝑷2) =
Cov(𝑷1,𝑷2)

�Var(𝑷1)Var(𝑷2)
=

∑ 𝛽1𝑖𝛽2𝑖𝑁
𝑖=1

��∑ 𝛽1𝑖2𝑁
𝑖=1 + 𝜎2(𝜖1)� �∑ 𝛽2𝑖2𝑁

𝑖=1 + 𝜎2(𝜖2)�
=

∑ 𝝃1𝑖𝝃2𝑖𝑁
𝑖=1

�(∑ 𝝃1𝑖2𝑁
𝑖=1 + 𝝃𝜖12 )(∑ 𝝃2𝑖2 + 𝝃𝜖22𝑁

𝑖=1 )
 

since the factors 𝑭 = (𝒇1, … ,𝒇𝑁) are independent. 

The equation above quantifies the correlation between two arbitrary strategies/portfolios through their correlation to a 
common set of independent risk factors 𝝃1𝑖 and 𝝃2𝑖. Common exposure suggested by correlations with the same signs (co-
positive or co-negative) increases factor correlation while offsetting exposures suggested by correlations with the opposite 
signs decreases factor correlation.  

The failure of diversification generally happens when different investment strategies/portfolios load up common exposures 
to independent risk factors, which usually happens right before risk factor crashes (materialization of risks). The reasons for 
this investor behavior could be over-confidence and over-extrapolation of past performance which push fund inflows 
(outflows) into (out of) related risk premia to extremes, and lead to waning demand for protection. 
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Risk Hedging with Independent Factors 
Suppose an investor does not want to be exposed to certain sources of risk; a hedging overlay could be formed through 
examining the multi-variate sensitivity of the portfolio with respect to selected factors through regression analysis. In the 
case of independent factors, individual factor sensitivity could be simply derived from one-by-one single variable 
regression. 

Without loss of generality, we assume the independent factors 𝑭 = (𝒇1, … ,𝒇𝑁) have unit marginal variance each and the 
pair-wise correlation with a portfolio 𝑷 is given by: 

𝝃𝑖 = Corr(𝑷,𝒇𝑖)  for 1 ≤ 𝑖 ≤ 𝑁 

Assume a portfolio volatility of 𝜎𝑷, the sensitivity or “beta" of portfolio 𝑷 with respect to 𝒇𝑖 is given by:  

𝜷𝑖 = Cov(𝑷,𝒇𝑖)/Cov(𝒇𝑖,𝒇𝑖) = 𝜎𝑷𝝃𝑖 

Moreover, the proportion of portfolio variance explained by performing a single-variable regression on 𝒇𝑖 is given by: 

𝑅𝑖2(𝒇𝑖) = 𝝃𝑖2 

In the case of multiple-independent-factor hedging, the portfolio sensitivities are still given by 𝜷 = (𝜷1, … ,𝜷𝑁) and the 
proportion of portfolio variance explained by performing a multiple regression on 

𝑅2(𝒇1, … ,𝒇𝑁) =
∑ 𝜷𝑖2𝑁
𝑖=1

𝜎𝑷2
= � 𝝃𝑖2

𝑁

𝑖=1
 

In other words, the multiple regression R-Squared (measuring explanatory power or goodness of fit) increases by a factor of 
squared correlation if an independent factor is added. 
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Equivalent Portfolio Methods 
 
In our introduction of Cross-Sectional Portfolio Risk Methods in Chapter 3, we have shown already that GMV is equivalent 
to an MVO when the expected returns of the assets are equal. We have also shown that MDP is equivalent to an MVO when 
the Sharpe ratios of the assets are equal. The following mathematical derivations are aimed to help better understand the 
connection among different methods in Figure 35 of the main text. 

To start with, we can write a Diversification ratio (DR) of an MDP via vector 𝝍 = 𝒘 ⋅ 𝝈, (𝜓𝑖 = 𝑤𝑖𝜎𝑖 for all i) as 

DR(𝒘) =  
𝒘𝑇𝝈
𝜎𝑝

=
𝝍𝑇𝟏

�𝝍𝑇𝑪𝝍
 

Hence, maximizing DR is equivalent to minimizing its denominator – which is just variance if all the asset volatilities are 
equal. 

We have also shown that if the volatility weighted average correlation for all assets is zero or  

𝜌(𝒘) =
∑ 𝑤𝑖𝜎𝑖𝑤𝑗𝜎𝑗𝜌𝑖𝑗𝑖,𝑗

∑ 𝑤𝑖𝜎𝑖𝑤𝑗𝜎𝑗𝑖,𝑗
= 0 

an MDP becomes an EMV portfolio. Furthermore, since  

𝒘𝑇𝚺𝒘 = 𝝍𝑇𝑪𝝍 

the optimal solution to an MDP in 𝝍 terms is given by 𝝍∗ ∝ 𝑪−1𝟏. As a result, an MDP is equivalent to an equal-marginal 
volatility (EMV) portfolio if the arithmetic average correlations for each asset are equal to each other. Similarly, as the 
solution for GMV is given by 𝒘 ∝ 𝚺−1𝟏, it is equivalent to an EMV portfolio if the average covariance for each asset with 
others are equal. 

Finally for a Risk parity (RP) portfolio, portfolio weights are inversely proportional to the beta. As a result, an RP portfolio 
is equivalent to an EMV portfolio if 𝜷 ∝ 𝛔 or in other words, if  

𝚺𝒘 ∝ 𝛔 

Since (𝚺𝒘)𝑖 = ∑ 𝑤𝑗σ𝑗σ𝑖𝜌𝑖𝑗𝒋 , the above-mentioned condition could be achieved if the marginal volatility weighted average 
correlation ∑ 𝑤𝑗σ𝑗𝜌𝑖𝑗𝑗 /∑ 𝑤𝑗σ𝑗𝑗  are equal for all the assets, which suggests that if an Equal Marginal Volatility Portfolio is 
also Maximally Diversified, it is a Risk Parity Portfolio. More generally, a Risk Budgeting (RB) portfolio is equivalent to 
EMV if ∑ 𝑤𝑗σ𝑗𝜌𝑖𝑗𝒋  are proportional to the pre-specified risk budgets 𝑠𝑖.  

For a RB portfolio to be equivalent to MVO, it needs to satisfy the MSR condition that 𝒘 ⋅ 𝝁 ∝ 𝒔. In other words, when 
return contributions of the assets are according to the risk budgets, a risk budgeting portfolio is also mean-variance 
optimized.  

Finally, we examine the relationship between MDP, EMV and RB. First of all, since MDP is a volatility-invariant version of 
GMV, the solution to MDP satisfies:  

𝑪(𝒘 ⋅ 𝛔) =
𝜍𝟏

𝟏𝑇𝑪𝟏
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Let’s denote the constant 𝜍
𝟏𝑇𝑪𝟏

 by 𝜂 which is solely determined by the correlation matrix of the assets, the above equation 
means: 

� 𝑤𝑗σ𝑗𝜌𝑖𝑗
𝑗

= 𝜂  for all 𝑖 

Now, for an RB portfolio, since its weights are determined by 𝑤𝑖𝛽𝑖 = 𝑠𝑖 for all i, which is equivalent to: 

𝑤𝑖σ𝑖� 𝑤𝑗σ𝑗𝜌𝑖𝑗
𝑗

= 𝑠𝑖σ𝑝2   for all 𝑖 

It follows that for MDP to be equivalent to RB, it is necessary and sufficient to have:  

𝑤𝑖σ𝑖𝜂 = 𝑠𝑖σ𝑝2  for all 𝑖 

or 

𝑤𝑖 =
𝑠𝑖/σ𝑖

∑ 𝑠𝑗/σ𝑗𝑗
 for all 𝑖 

This suggests that when the portfolio weight is proportional to the ratio of risk budget to marginal volatility, RB is 
equivalent to MDP.  
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Implementing Portfolio Methods 
 
Generally, there are three important processes during the implementation of a Portfolio Method on a set of assets. Factor 
Models are built to monitor the return exposure of the assets to key macro economic/market variables as well as other 
systematic risk factors (such as credit risk, liquidity risk, exchange order flows, foreign/domestic fund flows, insider/smart 
investor actions).  Regime Analysis is a process of determining the future macro/market regimes (growth, inflation, 
volatility, funding and market liquidity etc) for better assessment of risk factors and portfolio performance/risk.  The Risk 
Engine is a continuous monitoring process that takes various inputs (assets, factors, regimes, etc) in order to assess and 
manage portfolio risk (risk measurement, stop-loss triggers, policy requirements, etc). In practice, these three processes 
could be implemented together within an integrated risk management framework. As a matter of fact, many practical risk 
engines take care of factor modeling and regime switching analysis. 

Once these guiding procedures are in place, one needs to construct a model to estimate the distributions of the assets, so 
that an optimization procedure can be applied to obtain the portfolio weights by maximizing an expected utility function62. 
Under the mean-variance framework assuming approximate normal distributions, investors need only be concerned with 
three elements: (1) Expected Returns, (2) Marginal Volatilities, and (3) the Correlation Matrix. As a result, a systematic 
way of forecasting/estimating these elements is essential for successful implementation of Portfolio Methods. A summary of 
the key procedures/elements in implementing portfolio risk methods is given in Figure 116 below. 

Figure 116: Key Elements in Implementing Portfolio Risk Methods 

 
Source: J.P. Morgan Quantitative and Derivatives Strategy. 

 
There are three general types of systematic models used to estimate expected returns. Economic/Market Models use 
economic/market-based variables such as GDP growth, unemployment, PMI, yield curve, dividend yield, etc to forecast 
asset/factor returns. See Ilmanen (2011) for more details. Fundamental Models use security fundamentals such as balance 
sheet quality, cash flow projections as well as sector/industry cycle analysis to assess expected returns. Although 

62 In our introduction on Portfolio Construction Methods, we assumed that distributions of the assets are given. 
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Fundamental Models are more often used by Equity or Credit analysts on individual companies, the idea could be applied to 
market indices as well. Technical Models use trend (momentum), reversion, seasonality, and/or other charting techniques. 
Despite receiving strong attention and efforts, tactical return forecasting has achieved only limited success. 

As cross asset volatilities display short-term persistence, their near-term levels (not changes) are relatively easier to forecast 
than returns. There are three popular types of models in forecasting volatility: (1) One could directly use historical 
volatility63, which could also include exponential decay or other smoothing methods (e.g. based on volatility on volatility) 
could be used to better account for recent (or more important) information ; (2) using Implied volatility (if available) which 
reflects the derivatives market’s estimate of future realized volatility; (3) Various extensions of Generalized autoregressive 
conditional heteroskedasticity (GARCH) could be used to better account for the statistical behaviors of volatility. The idea 
of autoregressive conditional heteroskedasticity (ARCH) was originally introduced by Engle (1982) and Bollerslev (1988) 
and extended by many researchers to stochastic/jump diffusion volatility models. 

The last element is the correlation matrix of the assets. While simultaneous estimation of volatilities and the correlation 
matrix is possible through multivariate GARCH models such as Orthogonal GARCH discussed in Kariya (1988) and 
Alexander and Chibumba (1997), there are usually too many model parameters to obtain robust results so this method is 
rarely used by practitioners. Instead, there are three general empirical treatments of correlation matrices: (1) Historical 
correlation or implied correlations (if available) could be used by assuming persistence; (2) Dynamic models (such as 
auto-regressive) could be used to capture the time-series dependence structure of correlation. Correlations could also be 
calculated through factor exposures in a dynamic multi-factor model similar to our treatment in our introduction of 
independent risk factors; (3) Eigenvalue methods refers to estimation of the closest positive definite correlation matrix 
when a sample or model estimation fails to produce positive eigenvalues64. Robust estimation of the correlation matrix is a 
valid concern when the sample size is small compared with the number of assets65. 

After estimating the asset/factor distributions, we can move forward to implement a portfolio method. While most portfolio 
methods have explicit solutions in an unconstrained case, empirical implementation may involve constraints on asset/factor 
weights or group (such as industry/sector/region) weights. This could arise from considerations on the robust estimation of 
weights or from regulatory/policy/liquidity requirements. Moreover, methods like Risk Budgeting don’t have explicit 
solutions to start with. As a result, we usually need an optimization program to find the portfolio weights of the assets 𝒘 
according to some iterative procedure. In practice, there are several concerns in implementing such optimization programs, 
such as: which operating system and program language to use, which optimization method to deploy, and how scalable 
each Portfolio Method is by using a particular optimization procedure.  

While it may be desirable for more efficient implementation to use a multi-threading Unix/Linux system with a lower-level 
programming language such as C++/C#/JAVA, in practice most investors may only have access to Windows/Mac OS 
systems with higher level programming languages such as R, Matlab or Excel VBA.  

The choice/design of optimization method is a practical concern for large-scale problems with hundreds or thousands of 
assets, as computation time usually decays cubic to the asset dimension. As introduced in Chapter 3, each portfolio method 
could be regarded as a weight-searching program by minimizing or maximizing a certain non-linear objective function 
under specific constraints. In general, such a constrained non-linear optimization could be formulated by: 

𝐦𝐢𝐧 or 𝐦𝐚𝐱 
𝒘

Objective Function(𝒘)  

Subject to constraints on portfolio weights 𝒘 

 

63 Unlike returns, volatility is not directly measurable. Practitioners usually use the trailing standard derivations of daily returns or range-
based estimators such as the Yang-Zhang estimator in Yang and Zhang (2000).  
64 Theoretically, a correlation matrix of a non-degenerating set of assets should be a positive definite matrix with positive eigenvalues.  
65 Statistically, when sample size is less than the number of assets (e.g. one-year trailing correlation for the constituents of S&P 500), the 
sample correlation matrix will have zero eigenvalues as the number of principal components is less than the number of assets. 
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There are two general types of optimization methods for objective functions with continuous parameters. 66  Active set 
methods (ASM) start from a feasible point and search for directions that can optimize the objective function.  For example, 
the popular sequential quadratic programming (SQP) and gradient projection methods belong to ASM.  Interior point 
methods (IPM) create the so-called “prime-dual” problem sets, based on which an optimal path could be followed to 
achieve convergence. Both types of algorithms could be designed to solve medium to large sized optimization problems. 
Depending on the specific details in numerical implementation, ASM may become slower near to the optimal solution, in 
which case it could be computationally expensive. On the other hand, IPM usually requires a strictly feasible starting point 
which may be hard to determine in some cases. Interested readers could find more details on optimization in Polak (1971) 
and Fletcher (1987). 

The light blue box below illustrates a simple example in implementing a Mean-Variance Optimization with an active-set 
method.  In this example we use Matlab’s optimization toolbox function fmincon, with a negative portfolio Sharpe ratio as 
the objective function to be minimized (to achieve maximum Sharpe ratio). One could replace the definition of objective 
function to reach other optimal portfolios. 

function [AssetWeights, Portvol, fval, exitflag] = PortMVO(Sigma, mu, MinMarginalWeight, 
MaxMarginalWeight) 
 
if (nargin<2 || nargin>4) 
    error('Wrong Number of Arguments'); 
end 
  
options = optimoptions('fmincon','Algorithm','active-set','Display', 'off', 'TolFun', 1e-8); 
  
N = size(Sigma, 2); 
      
[AssetWeights, fval,exitflag] = fmincon(@(w) -PortMaxSharpeObj(w, Sigma, mu), ones(N,1)/N , ...  
,[],[], ones(1, N), 1,  ones(N,1) * MinMarginalWeight, ones(N,1) * MaxMarginalWeight,[], options); 
  
Portvol = sqrt(AssetWeights' * Sigma * AssetWeights); 
 
function objFunction = PortMaxSharpeObj(w, Sigma, mu) 
 
portvar = w' * Sigma * w;   
 
objFunction = w' * mu ./ sqrt(portvar); 
 
 
 
 
The performance of an optimization procedure also leads to the topic on scalability of different portfolio methods – whether 
a method is only suited to small problems with, say, less than 20 assets, or can be scaled up to a large program with more 
than 1000 assets. For example, in risk-based indexing of stocks, some researchers suggested using the Global Minimum 
Variance or Risk Parity methods to replace the market-weight methods widely implemented in global equity benchmarks 
such as S&P 500 index. In this case, it is desired that portfolio weights could be generated within seconds. 

We conduct some simulation studies on the computing time needed for typical portfolio methods on an average personal 
computer (dual-core 2.4GHz) with Windows 7 64-bit operating system. Table 61 below summarizes the results using the 
active-set method in Matlab: for a given number of assets, we simulate a positive definite covariance matrix and a vector of 
expected returns, based on which we test the time (in seconds) it takes to reach a solution. We include Mean-Variance 
Optimization (MVO), Global Minimum Variance (GMV) and Risk Parity (RP) as examples because they represent three 
distinct types of objective functions in our demonstration of portfolio methods. 

66 For objective functions with discrete parameters, one could simply evaluate the objective function on all possible combination of 
parameters and find the best combination. Since discrete optimization is usually easier to implement, practitioners occasionally use 
parameter-discretization (e.g. assume asset weights can only take values in {0, 0.1, 0.2, …, 1}) to find the optimal set of parameters.  
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Table 61: Time (in seconds) needed to solve a one-period optimal portfolio using active-set methods  

  MVO GMV RP 
Nu

mb
er

 
 of

 A
ss

ets
 5 0.04 0.02 0.05 

50 0.51 0.09 3.11 
200 43 1 249 
500 1,461 2 2,457 

Source: J.P. Morgan Quantitative and Derivatives Strategy. 

For less than 50 assets, each method comfortably reaches a solution within seconds. Moreover, we find that for a GMV type 
method with quadratic objective functions, it only took 2 seconds in Matlab to solve the solution for 500 assets, while MVO 
took 1461 seconds (24 min) and Risk Parity took the longest (2457 seconds, or 41 min). It is possible to further optimize the 
results by using interior point methods or running programs using lower-level compiling languages. For example, using 
Matlab’s implementation of the interior point method, it only took 6.5 seconds to reach a solution for MVO with 2000 
assets, which makes the method suitable for large-scale portfolio management purposes. 
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Glossary 
 
Absolute return 
 
Absolute return strategies aim to produce a positive return regardless of the performance of the general market. This is 
usually achieved by taking positions in a portfolio of diversified risk premium factors with prudent risk management. 

Algorithm 

An algorithm is a set of formulaic steps that uses a series of inputs to arrive at an output. An algorithm could be 
implemented as an automatic process that takes input data into some calculation engine and produces the outputs. 

Annualized return 

An annualized rate of return is the return on an underlying converted into an annual equivalent. For example, a 1 month 
return of 1% could be stated as an annualized rate of return of 12%. Or a five year return of 10% could be stated as an 
annualized rate of return of 2%. 

Asset allocation 

The mechanism of allocating investment capital across different underlying asset classes, such as equities, bonds and 
commodities. The assets could also be cross-asset risk premium factors introduced in this primer.  

Asset Class 

An asset class is a set of financial instruments that show similar characteristics or follow a common theme. Examples of 
asset classes are equities, commodities, government bonds, corporate bonds, real estate, etc. Volatility is recently recognized 
as a separate asset class. 

Back-testing 

The analysis of an algorithm or model using historical data. Many of the cross-asset risk premium factor indices contain 
back-tested data, which shows how the model would have performed under historical market conditions. 

Benchmark 

A reference index or underlying against which performance of another index is compared with. 

Beta 

The beta of an asset measures how much it moves compared with a benchmark. In other words, it measures sensitivity of 
returns with respect to the benchmark. For example, stocks with a high beta tend to have larger positive returns when the 
broader market rises, and conversely, have a larger negative return when the broader market declines.  

Black-Litterman (BL) 

The BL methodology employs a Bayesian framework to tackle portfolio allocation after incorporating investor views on 
expected returns. 
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Bond 

A bond is a financial instrument that companies or governments use to raise capital. The purchaser of a bond effectively 
lends the issuer (e.g. the company or government) money, in return for coupons and a repayment of principal at maturity. 

Carry Strategy 

A systematic strategy that stays overweight in higher yielding instruments and/or underweight in lower yielding 
instruments. 

Correlation  

Correlation is a measure of the degree to which changes in two underlyings are related. It is a number that takes a value 
between plus one (meaning that they both move in tandem) and minus one (which means they move in opposite directions).  

Covered call  

Selling a call option while owning the underlying security on which the option is written. The technique is often used by 
fund managers to generate income by receiving the option premium. Typically, they would sell slightly out of the money 
options on the asset, which gives them some upside exposure to the asset.  

Constant Mix  

Constant Mix is a portfolio risk management technique that invests a constant proportion of capital in the underlying 
asset/factor and the rest to risk free asset. 

Constant Proportional Portfolio Insurance (CPPI) 

Constant Proportional Portfolio Insurance (CPPI) is a dynamic portfolio risk management technique that invests a constant 
proportion of the cushion above a guaranteed floor to the risky asset/factor and the rest to risk free asset. 

Currency forward  

An agreement between two parties to exchange a defined amount of one currency for another at a particular date in the 
future, at a price that is agreed today. 

Derivative 

A derivative is a financial product, the value of which depends on the value of other financial (or non financial) instruments. 

Directional 

A directional strategy is one which has outright long or short positions in some underlying financial instruments. For e.g. a 
strategy with a long position would be described as a bullish (or long) strategy and will deliver positive returns if the 
underlying financial instrument displays positive returns. 

Downside risk  

The risk of losses that an investor may experience if there is a decline in the price on an underlying investment. 
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Drawdown 

Drawdown is calculated as the percentage return from the peak level of the index to some reference position. Maximum 
Drawdown measures the largest Drawdown of the index over some history. 

Excess return 

The difference between a fully collateralized total return and the risk-free rate. More generally, it is the fully financed return 
of an investment (e.g. the P/L of being long a portfolio of stocks financed by shorting another portfolio of stocks). 

Equal Marginal Volatility (EMV) 

Equal Marginal Volatility (or Volatility Parity) is a portfolio allocation technique that weights each asset according the 
inverse of its volatility.  

Fundamental Analysis 

Refers to a type of analysis, typically used in the context of stocks, which involves analyzing company assets and liabilities, 
cash flows, management structure and competitive advantages, along with competitors and markets. It is performed on 
historical and current data with the aim of making forecasts about the securities. The term is used to distinguish such 
analysis from other types of investment analysis, such as quantitative or technical analysis. 

Factors 

Factors can refer to certain macro economic or market indicators. They can also refer to some systematic strategies 
capturing different risk premia. See also “Risk Factors” and “Risk Premia”. 

Future  

A future is a contract between two parties to buy or sell a standard quantity of a given instrument, at a price agreed today, on 
a specific date in the future. Futures are traded on a range of underlying instruments including commodities, bonds, 
currencies and stock indexes. 

Global Minimum Variance (GMV) 

Global Minimum Variance is a risk-based portfolio allocation technique that minimizes the portfolio variance under various 
weight constraints.  

Growth Stocks  

Refers to stocks that have higher earnings growth potential than the market average. These stocks typically have a high 
share price compared with their earnings (i.e. high P/E ratio). The opposite of growth stocks are value stocks. 

Historical volatility  

Historical volatility refers to the volatility of an index or financial instrument over some period in the past. This compares 
with implied volatility, which is an expectation of the future level of volatility priced into a derivative contract. 

Implied volatility  

Implied volatility refers an expectation of the future level of volatility fo an underlying instrument priced into a derivative 
contract. It is typically derived from the prices of options on the instrument by backing out the volatility parameter from a 
pricing formula like the Black-Scholes equation. 
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Interest rate swap  

A derivative between two counterparties where one counterparty agrees to exchange a stream of interest payments for the 
other party’s fixed cash flows. They can be used by hedgers to manage their liabilities, or they can be used by investors to 
replicate bond positions. They are amongst the most liquid and popular derivative instruments. 

Leverage 

Refers to the exposure of an index (or position) to another underlying index. A position is said to be leveraged if the 
exposure is greater than 100%, meaning that a 1% change in the underlying index will generate a greater than 1% change in 
the value of the position. 

Leverage invariant 

Portfolio weights on the unleveraged assets are not affected by leveraging up or down on a certain subset of assets. 

Libor 

The London inter-bank offered rate (LIBOR) is a daily reference rate based on the interest rates at which banks borrow 
unsecured funds from other banks in the London wholesale interbank market. This rate is typically set every business day. 

Liquidity 

Liquidity is a measure of the ease of trading in and out of financial instruments. An instrument is said to be liquid if the 
costs to enter and exit that position are low. 

Mean-Variance Optimization (MVO) 

MVO solves one-period portfolio optimization by using only the first two moments of the underlying return series. It 
achieves minimum variance given a certain expected return target. 

Mean reversion 

The tendency of a certain metric (price, yield, portfolio etc) to revert to its short-term or long-term fair value determined by 
technicals or fundamentals variables. It can work in either absolute or relative terms. Mean reversion belongs to Value style 
in systematic strategy terms. 

Momentum 

The tendency of a trend to continue or the best (worst) performance assets to continue to outperform (underperform). 

Most-Diversified Portfolio (MDP) 

Most-Diversified Portfolio is a portfolio allocation technique which maximizes the diversification ratio defined by the ratio 
of weighted average marginal volatility to portfolio volatility. It is equivalent to Mean-Variance Optimization (MVO) when 
the Sharpe ratios for all the assets are equal to a certain positive constant.  

Option 

An option is a contract that gives the holder the right, but not the obligation, to buy or sell an underlying at a certain price in 
the future. In exchange for this right, the purchaser of the option has to pay the seller a premium. Options which are 
exercisable at only at a specific point in the future (the options expiry date) are called European options, while those which 
are exercisable at any point in time before expiry (from the date of purchase) are termed American options. 
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Option-Based Portfolio Insurance Strategies (OBPI) 

Option-Based Portfolio Insurance (OBPI) is a portfolio risk management technique that synthetically replicates a “protective 
put” on the underlying risky asset/portfolio. 

Overlay 

A strategy designed to tweak the return profile of a portfolio using derivatives or other financial instruments, but generally 
leaving the securities in the underlying portfolio unchanged. For example, a fund manager may wish to implement a covered 
call overlay which generates extra income from the sale of options, but reduces the maximum upside potential of his 
portfolio. 

Price return 

The price return is the return on an underlying over some period, where the return measure takes into account only the 
appreciation in price of underlying and not any income or distributions generated over the period. Often, indices like the 
S&P 500 are described as price return, as they only measure the price changes of the component securities (and not any 
dividends paid by these components). 

Quantitative Strategies 

Quantitative (or "Quant") strategies  are investment strategies that use large amounts of financial and market data with the 
aim of looking for trading patterns to make investment decisions. They are typically employed by more sophisticated fund 
managers or hedge funds. 

Replication 

Replication of an index refers to the purchase of securities whose returns match the returns of the index. For example, to 
replicate the performance of S&P 500 Index, one would need to purchase all 500 securities within the S&P 500, in their 
respective weightings. One could also exercise partial replication or statistical replication to match the risk/return profile of 
an index. 

Redundancy invariant 

Portfolio weights on the unleveraged assets are not affected by introducing one or more linear combinations of the original 
assets. 

Risk Budgeting (RB) 

Risk Budgeting (RB) is a generalized version of Risk Parity, which allows for a pre-specified total contribution to risk of the 
marginal assets. See also “Risk Parity”. 

Risk Factors 

Also called alternative betas, or exotic betas, risk factors are synthetic assets designed to capture risk premia not accessible 
by traditional assets. Risk factors are defined by a set of trading rules that often involve multiple assets/trading instruments, 
and a rebalancing strategy. 

Risk Parity (RP) 

Risk Parity (RP) or equal contribution to total risk (equal-CTR) is a portfolio allocation technique that achieves equal total 
contribution to risk of all the marginal assets.  
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Risk Premium 

Risk premium is generally defined as excess compensation for taking a certain risk, such as macro risks, liquidity risks or 
tail risks. They are usually implemented as different investable risk factors. See also “Excess Return”.  

Sharpe ratio 

A measure that aims to capture the potential return of an underlying per unit of risk. It is calculated as the Excess Return of 
an underlying divided by its Volatility. 

Sortino ratio 

Similar to a Sharpe Ratio, the Sortino Ratio measures the excess return of an underlying divided by Downside Volatility. 
Downside Volatility refers to the volatility of the underlying measured by considering only returns below a certain target. It 
is a metric that focuses on the downside risk of a portfolio. 

Stock index future 

Refers to a futures contract on a stock index (see “Futures” definition above). For example, the S&P 500 has listed futures 
which allow professional investors to replicate the returns of the index in a cost efficient manner. 

Stop Loss 

A stop loss strategy is a portfolio risk management technique that is full invested in a risky portfolio but unwinds this 
investment and switches to 100% allocation to the risk-free asset when the portfolio value touches a designated floor level. 

Systematic Strategy 

An investment strategy that runs using an algorithm, typically with little or no investor discretion. Systemic strategies can 
run on virtually any set of assets. 

Time-Invariant Portfolio Protection (TIPP) 

Time-Invariant Portfolio Protection (TIPP) is a class of generic portfolio risk management techniques that aims to maintain 
a minimum value of the portfolio. See also “CPPI” and “OBPI”. 

Total return 

The total return of an investment is the return of the investment including price appreciation and income generated. A total 
return stock index reflects the price return of the stocks in addition to the reinvested dividends paid by the stocks within the 
index. 

Type of Strategies 

Risk factors are building blocks for systematic strategies. These strategies can be designed with the aim of generating alpha, 
enhancing performance of traditional assets, providing specific alternative beta exposure or serving as a portfolio hedge. 

Value-at-risk 

Refers to a measurement that aims to calculate the worst case loss of a portfolio over a particular holding period, with a 
particular degree of confidence. For example, a "99%, 1 day Value at Risk (VaR) of US$1 million" for a given portfolio 
means that the there is a 99% probability that the return of that portfolio over a given day will be at least greater than 
negative US$1 million.  
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Value Investing 

Refers to an investment strategy that involves buying stocks that appear underpriced on the basis of some form of 
fundamental analysis. 

Value Strategies 

Refers to systematic strategies which go long assets/factors that are cheaply valued and short assets/factors with expensive 
valuation. See also “Mean Reversion”. 

Variance 

Variance is a statistical measure that refers to how "spread out" a distribution is. For example, the returns of a factor can be 
described as having high variance if the returns are fairly wide ranging and dispersed. 

Variance swap 

A contract between two parties to exchange a pre-agreed variance level for the actual amount of variance realized over a 
period for a certain asset. The payoff to the "long" party is proportional to the difference between the realized variance of 
the designated asset and the strike variance.  

Volatility 

Volatility usually refers to the standard deviation of the returns of a financial instrument within a specific time horizon. It is 
a widely used measure to express the risk of the financial instrument over the specified time period. Volatility is normally 
expressed in annualized terms as a percentage. For example, emerging market equities historically exhibit high volatility. 
On the other hand, short-term treasury bills would be classified as an asset with low volatility. 

Volatility Premium 

Refers to the long-term positive average spread between implied and realized volatility (variance).  

Volatility Targeting 

Volatility Targeting is a dynamic portfolio risk management technique that targets a constant portfolio/factor volatility via 
periodic rebalancing. 

Zero coupon bond 

A debt instrument which pays no coupons but redeems at par at the maturity date. It will typically be sold at a discount to 
par. 
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Disclaimers 
 
Risks of Common Option Strategies 

Risks to Strategies: Not all option strategies are suitable for investors; certain strategies may expose investors to significant 
potential losses. We have summarized the risks of selected derivative strategies. For additional risk information, please call 
your sales representative for a copy of “Characteristics and Risks of Standardized Options.” We advise investors to consult 
their tax advisors and legal counsel about the tax implications of these strategies. Please also refer to option risk disclosure 
documents.  

Put Sale. Investors who sell put options will own the underlying stock if the stock price falls below the strike price of the 
put option. Investors, therefore, will be exposed to any decline in the stock price below the strike potentially to zero, and 
they will not participate in any stock appreciation if the option expires unexercised. 

Call Sale. Investors who sell uncovered call options have exposure on the upside that is theoretically unlimited. 

Call Overwrite or Buywrite. Investors who sell call options against a long position in the underlying stock give up any 
appreciation in the stock price above the strike price of the call option, and they remain exposed to the downside of the 
underlying stock in the return for the receipt of the option premium. 

Booster. In a sell-off, the maximum realised downside potential of a double-up booster is the net premium paid. In a rally, 
option losses are potentially unlimited as the investor is net short a call. When overlaid onto a long stock position, upside 
losses are capped (as for a covered call), but downside losses are not. 

Collar. Locks in the amount that can be realized at maturity to a range defined by the put and call strike. If the collar is not 
costless, investors risk losing 100% of the premium paid. Since investors are selling a call option, they give up any stock 
appreciation above the strike price of the call option. 

Call Purchase. Options are a decaying asset, and investors risk losing 100% of the premium paid if the stock is below the 
strike price of the call option. 

Put Purchase. Options are a decaying asset, and investors risk losing 100% of the premium paid if the stock is above the 
strike price of the put option. 

Straddle or Strangle. The seller of a straddle or strangle is exposed to stock increases above the call strike and stock price 
declines below the put strike. Since exposure on the upside is theoretically unlimited, investors who also own the stock 
would have limited losses should the stock rally. Covered writers are exposed to declines in the long stock position as well 
as any additional shares put to them should the stock decline below the strike price of the put option. Having sold a covered 
call option, the investor gives up all appreciation in the stock above the strike price of the call option. 

Put Spread. The buyer of a put spread risks losing 100% of the premium paid. The buyer of higher ratio put spread has 
unlimited downside below the lower strike (down to zero), dependent on the number of lower struck puts sold. The 
maximum gain is limited to the spread between the two put strikes, when the underlying is at the lower strike. Investors who 
own the underlying stock will have downside protection between the higher strike put and the lower strike put. However, 
should the stock price fall below the strike price of the lower strike put, investors regain exposure to the underlying stock, 
and this exposure is multiplied by the number of puts sold. 

Call Spread. The buyer risks losing 100% of the premium paid. The gain is limited to the spread between the two strike 
prices. The seller of a call spread risks losing an amount equal to the spread between the two call strikes less the net 
premium received. By selling a covered call spread, the investor remains exposed to the downside of the stock and gives up 
the spread between the two call strikes should the stock rally. 

Butterfly Spread. A butterfly spread consists of two spreads established simultaneously. One a bull spread and the other a 
bear spread. The resulting position is neutral, that is, the investor will profit if the underlying is stable. Butterfly spreads are 
established at a net debit. The maximum profit will occur at the middle strike price, the maximum loss is the net debit. 

Pricing Is Illustrative Only: Prices quoted in the above trade ideas are our estimate of current market levels, and are not 
indicative trading levels. 
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KOFIA requirements, that their analysis was made in good faith and that the views reflect their own opinion, without undue influence or 
intervention. 
 

Important Disclosures  
 

 
 
Company-Specific Disclosures: Important disclosures, including price charts, are available for compendium reports and all J.P. Morgan–
covered companies by visiting https://jpmm.com/research/disclosures, calling 1-800-477-0406, or e-mailing 
research.disclosure.inquiries@jpmorgan.com with your request. J.P. Morgan’s Strategy, Technical, and Quantitative Research teams may 
screen companies not covered by J.P. Morgan. For important disclosures for these companies, please call 1-800-477-0406 or e-mail 
research.disclosure.inquiries@jpmorgan.com. 
 
Explanation of Equity Research Ratings, Designations and Analyst(s) Coverage Universe:  
J.P. Morgan uses the following rating system: Overweight [Over the next six to twelve months, we expect this stock will outperform the 
average total return of the stocks in the analyst’s (or the analyst’s team’s) coverage universe.] Neutral [Over the next six to twelve 
months, we expect this stock will perform in line with the average total return of the stocks in the analyst’s (or the analyst’s team’s) 
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applicable, the price target, for this stock because of either a lack of a sufficient fundamental basis or for legal, regulatory or policy 
reasons. The previous rating and, if applicable, the price target, no longer should be relied upon. An NR designation is not a 
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in the Important Disclosures section of this report, the certifying analyst’s coverage universe can be found on J.P. Morgan’s research 
website, www.jpmorganmarkets.com.  
 

J.P. Morgan Equity Research Ratings Distribution, as of September 30, 2013 

 Overweight 
(buy) 

Neutral 
(hold) 

Underweight 
(sell) 

J.P. Morgan Global Equity Research Coverage 43% 44% 12% 
    IB clients* 57% 49% 39% 
JPMS Equity Research Coverage 42% 50% 8% 
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*Percentage of investment banking clients in each rating category. 
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above. 
 

 
Equity Valuation and Risks: For valuation methodology and risks associated with covered companies or price targets for covered 
companies, please see the most recent company-specific research report at http://www.jpmorganmarkets.com, contact the primary analyst 
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upon various factors, including the quality and accuracy of research, client feedback, competitive factors, and overall firm revenues.  
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